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INSTABILITY OF A STRATIFIED SHEAR FLOW

Introduction

This report contains a discussion of instability in a number of

hydrodynamical models which have variations of density and velocity

along the vertical. Most of the results which are presented here are

not new. However, an attempt has been made to exhibit the similarity

of the physical mechanism of the instability in the different models,

which is sometimes hidden in the classical treatment of the subject. If

the report has succeeded in this objective, it is at least in part because

the so-called method of symmetric waves has been used in the mathematical

analysis of the models. This method studies the instability as an initial

value problem, instead of deriving the instability from the properties of

of the normal modes of the system.

The report may be regarded as a systematic introduction to the

theory of long unstable cyclone waves in atmospheric models which take

into account the compressibility of the air and the rotation of the earth.

Much of the preliminary studies of these baroclinic waves has been

carried out under the sponsorship of this contract, but is not yet ready

for publication. This work will be continued and reported on under a

current three year contract which is sponsored by the National Science

Foundation.

March 1963

Jdrgen Holmboe
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Shearing Instability

1. Instability of a vortex sheet. - Consider a system consisting

of two unbounded homogeneous fluid layers with the same density which have

the uniform relative translation 2U parallel to their plane surface of separ-

ation. This surface is called a vortex sheet. We shall use a frame of referenlc.

in which the fluid layers move in opposite directions with the same speed U.

We call this the symmetric frame.

The vortex sheet w~iay be regarded as a continuously distributed roy:

of vortex filaments of equal strength and sense. The strength of the fila-

ments in terms of the velocity discontinuity 2U is obtained by applying Stoke..2L.

theorem to a rectangular curve with one pair of sides parallel to the vortex

sheet. If the length of these sides is L, the circulation of tile curve is

2UL, which is the combined strengths of the vortex filaments distributed alon'

the length L of the vortex sheet. Since the distribution is uniform, the

vortex strength per unit length of the vortex sheet is 2U. This quantity

is called the sliding vorticity of the vortex sheet.

It is readily seen that the vortex filaments are stationary in the

symmetric frame. Consider any one of them. This filament is not moved by

its own field. All the other filaments may be grouped in pairs whose neutral

stagnation points coincide with the filament in question, so none of the

fields move the filament. The same is true for all the vortex filaments.

Accordingly the undisturbed plane vortex sheet is stationary.

Let us next assume that the vortex sheet is deformed into a sinusoidal

surface of wave length L= 2/A and a small amplitude A , such that IA 6C.SS5
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Consider now the motion of the filaments. The filaments at the nodal points

have no motion because all the other filaments, when grouped symmetrically

in pairs with respect to a node, have fields whose neutral stagnation points

coincide with the node. Consider next the filament on one of the crests.

Again all the other filaments may be grouped in pairs symmetric with respect

to the crest. The field from each pair gives the crest filament a partial

motion in the direction of the flow in the upper layer. In the same way we

find that the trough filaments move in the direction of the flow in the

lower layer. This means that vorticity is being concentrated at the down-

wind nodes and depleted from the upwind nodes. It is readily seen that

this periodic redistribution from the initial uniform distribution of the

vortex filaments results in the evolution of a new field with ascending

motion at the crests and descending motion in the troughs. So the amplitude

of the vortex sheet deformation begins to grow.

The vertical motion associated with the periodic vorticity con-

centrations and depletions at the vortex sheet nodes has the same sense

in both layers (see the middle diagram in fig. 1). Thia field adds to the

initial vertical motion field wliich is associated with the deformed interface.

Since the first streamlines in both layers coincide with the vortex sheet,

the initial vertical motion is everywhere opposite in the two layers with

maximum amplitude at the nodes. The resultant of this initial field and

the evolving field from the periodic vorticity concentrations at the nodes

is a field which moves downwind in both layers in the symmetric frame.

During this evolution the deformation of the vortex sheet has no progressive

motion in the symmetric frame, so at all times the flow in both layers is

parallel to the vortex sheet at the nodes. This means that the amplitude

of the vertical motion must grow faster than the amplitude of the vortex
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sheet as long as the progressive motion of the wave continues.

The wave must stop before the upper and the lower field arrive

in phase. For the streamlines in both layers are parallel to the vortex

sheet at the nodes. If the upper and lower wave are placed in the same

phase (lower diagram in fig. 1), the upper and lower streamlineb are both

horizontal at the points where the vortex sheet deformation should have its

nodes. So the vortex sheet can have no deformation in this state. Since

the vortex sheet amplitude must keep on growing after the initial state with

the upper and the lower field in opposite phase (top diagram in fig. 1),

it is evident that the wave cannot reach the state of equal phase which

calls for no deformation of the interface. The wave must become stationary

in some intermediate state (middle diagram in fig. 1). When this state

of stationary phase is reache4 both the wave amplitude and the vortex sheet

amplitude will keep on growing at the same relative rate, as long as the

simple sinusoidal periodicity is not destroyed, that is as long as the

product kA remains much less than unity. During this early part of thes

evolution the growth of the vortex sheet amplitude is equal to the vertical

velocity at the crest of the vortex sheet deformation. This vertical

velocity is proportional to the vortex sheet amplitude, so s/A .const.

In other words during the early linear part of the evolution the wave grows

at an exponential rate in the state of stationary phase.

Consider the evolution of the wave from the state of equal phase

(bottom diagram in fig. 1). This state has added vorticities distributed

sinusoidally along the undeformed vortex sheet, with the maximum positive

and negative vorticity added to the vortex filaments shown in the figure.

The vertical component of this added field has the same phase in both

layers. It deforms the vortex sheet into a sinusoidal surface with nodes
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at the points of maximum added vorticity. As this deformation develops,

it follows from the symmetry that it cannot have any progressive motion

in the symmetric frame. So the streamlines are parallel to the vortex

sheet at the nodes at all times. But this kinematic constraint forces both

the upper and the lower field to move symmetrically upwind from the initial

non-deformed state. Again it is clear that the wave in this evolution canr~ot

reach the state of opposite phase since it moves downwind through that state.

The two non-tilting states shown at the bottom and the top in fig. 1

are accordingly mutually exclusive. In the evolution from either one of

these states the wave cannot reach the other. From either non-tilting

state the wave approaches the same state of stationary phase which has a

downwind tilt from the non-tilting state with the deformed interface and

an upwind tilt from the non-tilting state with the undeformed interface.

The wave in the vortex sheet which we have discussed here is called

after its discoverer a symmetric Helmholtz wave. It is convenient to have

short names for the two non-tilting states of the wave. The state with

deformed vortex sheet and the upper and lower wave (vertical motion) in

opposite phase is called the a-state. The state with a non-deformed

vortex sheet and the upper and lower wave in phase is called the b-state.

From either one of these the symmetric Helmholtz wave will approach asymp-

totically the same state of stationary phase with a downwind tilt from

the a-state and exponential growth of the amplitudes as long as As k l.

The phase velocities with which the wave leaves the non-tilting

states may be anticipated from dimensional considerations. The vortex

sheet in the undisturbed state is defined by a single physical parameter

namely the velocity U which measures one half of the sliding vorticity.

When the wave is introduced the wave length is a second parameter. The
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phase velocities in the non-tilting states must be related to these basic

parameters, so they must both be proportional to U. The simplest choice

suggests that the wave moves in opposite direction through the non-tilting

states with the speed U and approaches a state of stationary phase half

way between these states. The exponential growth rate in this asymptotic

state has the dimension of inverse time, so it must be proportional to kU.

It is in fact equal to kU.

The values of the stationary phase angle and the growth rate of the

wave amplitude are obtained mathematically by applying the kinematic and

dynamic boundary conditions to the vortex sheet: Let us first consider the

kinematic conditions, which state that the fluid particles in the vortex

sheet has the same vertical motion as the fluid particles immediately above

and below, thus
Dz

s

(1.1) - = w, = WS " (Kinematic conditions)

Here z is the ordinate of the vortex sheet measured from its undeformed8

level (z= 0), and the subscripts 1 and 2 refer to the upper and the lower

layer. Since the motion in the layers is solenoidal, the velocity field

v of the wave disturbance may be represented by a streamfunction * whose

sign we choose such that

(1.2) v = ui+ wk -- "

Here i, ,, k are the orthogonal triple of unit vectors of a rectangular

coordinate system (x,y,z) fixed to the symmetric frame with k pointing

upward from the lower to the upper layer, and i pointing along the basic

flow in the upper layer. Z points along the axis of the vortex filaments

in the vortex sheet. The ordinate z is measured from the interface level.

Since the motion in the layers is irrotational, the streamfunction in

(1.2) satisfies Laplaces's equacion. Since further the streamfunction has
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a sinusoidal variation in the x-direction with the wave number k, its

Laplace equation may be written

72 = 1"-k1 t = 0.

The bounded solutions of this equation in the two layers are

4 = e kz, (in the upper layer)

(1.3) kz
*S= e . (in the lower layer)

Here *1 and # denote the streamfunction values at the interface level

(z= 0). These have the same amplitude in the symmetric wave, and by

inspection of fig. 1 we see that the streamfunction in the upper layer

has the same sign as zs in the a-state. In an arbitrary tilting state

of the wave with the phase e measured positive downwind from the a-state

the wave elements are therefore

= A cos kx = Real part (Ae ikx)

(1.4) 41 = UAcos(kx-0) = Real part (Zeikx)

-S = UAcos(kx +e) a Real part (Z*eikx).

On the right are introduced the complex wave parameter Z and its conjugate

Z*, defined by

(1.5) Z = UAe-ie - X-iY.

By including U in the amplitude factor UA of the streamfunction the amplitude

A has the dimension of length. It is readily seen that A is the interface

level streamline amplitude of the resultant field in the symmetric frame.

o- Let z, denote the ordinate of this streamline in the upper layer.

The streamline slope at an arbitrary tine, to the linear approximation, is

az w 1lat,

which, using (1.4), gives

z, = Acos(kx -8).
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This is a sine curve with the amplitude A and the crest displaced the phase

0 downwind from the interface crest as shown in. the middle diagram, fig. 1.

Since the interface def'rmaticn is staticnary, the streauline is parallel

to the interface at the node, so its amplitude is given by A =Acos 9.s

This condition is of course implicitly contained in the formal kinematic

condition (1.1).

We note that the symmetric wave in (1.4), besides the two unchanging

parameters U and k, is defined by the two amplitudes As, A and the phase e.

These three parameters are functions of time only. To find their evolution

in time, we need three independent conditions. Two of these are the

kinematic conditions in (1.1). The third is the dynamic condition that

the vorticity of the filaments in the vortex sheet (the sliding vorticity)

does not change with time.

It is convenient to represent these conditons non-dimensionally by

choosing units of length and time such that U= k= l, so these parameters

disappear from the equations. By this choice the growth rate of the wave

amplitudes will be obtained non-dimensionally in units of kU.

Turning now to the kinematic condition (1.1) above the interface,

we represent the individual change as the sum of local and convective

changes in the symmetric frame and express the vertical velocity by the

streamfunction in (1.2). With the non-linear convective term v °z

ignored, the condition then takes the form

(1.6) + ZI = W1 w = 81

If this condition is satisfied for the symmetric wave, the kinematic condition

below the interface is automatically satisfied. One of the kinematic

conditions in (1.1) is replaced by the condition of symmetry in (1.4), so
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it is sufficient to consider (1.6). With the wave elements substituted here

from (1.4), the exponential factor eikx cancels, and we get

A + iA = iZ,5 5

which, using (1.5) have the real and imaginary parts

A = Y = A sin e
(1.7) 8 (Kinematic conditions).

A = X = Acosn.

The first of these gives two equivalent expressions for the vertical velocity

at the interface crest. The second condition states the fact, already

noted earlier, that the streamline is parallel to the interface at the nodes.

The ratio of the two kinematic conditions gives the growth rate of the

interface amplitude in an arbitrary tilling state of the wave, namely

(1.8) d lnA s tang.

The growth rate of the wave amplitude is obtained from the time derivative

of the second condition combined with the first, namely

A= Acoeo - eAsinG = Asin8.

Applied to the b-state (8 = 900) this combined kinematic condition gives

the phase velocity hb= - 1. The wave moves upwind through the b-state with

the speed U of the basic flow. In the b-state the propagation of the wave

is governed by kinematic conditions only. The ccmbined condition gives the

growth rate of the wave amplitude in an arbitrary tilting state, namely

(1.9) d nA = (1+

The wave is neutral in the non-tilting states. In a state of stationary

phase (e = 0) the wave and the interface deformation grow at the same rate,

n= tan ea. In all other tilting states they grow at different rates.

We now turn to the dynamic boundary condition at the interface, which

states that the surface vorticity of the vortex sheet filaments is con-
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servative, that is

D
IT(2U+u, -u) = 0.

With the individual change represented as the sum of the local and con-

vective changes in the symmetric frame this condition, to the linear approx-

imation, has the form

(1.10) T(u + us). (Dynamic condition).

It is the mathematical formulation of the principle which we made use of

in the qualitative discussion of the a-state at the beginning of this

section, namely: The local increase of vorticity along the vortex sheet

comes from the convergence of the surface vorticity. This interpretation

of the dynamic boundary condition was given by Hfiland* in 1942. Thn

principle is most clearly exhibited in the a-state (top diagram in fig. 1)

where the convergence along the vortex sheet has maximum strength at the

downwind nodes.

With the horizontal velocities in (1.10) represented by the stream-

function in (1.2,3) the dynamic condition becomes

aw (* + ) =-U (*) -

or with the wave elements of the symmetric wave in (1.4) substituted

(1.11) d-(A sine) u Acose. (Uk= 1).dt

This is the dynamic condition (conservation of sliding vorticity) for the

symmetric wave in the vortex sheet. With the time differentiation carried

out, it becomes

AsinG + ; Acose = Acose.

Applied to the a-state it gives the phase velocity of the wave through the

a-state as ea= 1. The wave moves downwind through the a-state with the

* E. Hliland: The Developed Form of the Dynamic Boundary Condition with
Applications, Arch. for Math. og Naturvid. B. XLVI. Nr. 2, 1942.
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speed of the basic flow, so it has at that moment no intrinsic propagation

through the fluid. The propagation through the a-state is determined by

the dynamic condition only, namely by the vorticity concentrations at the

downwind nodes, presicely as anticipated by qualitative reasoning earlier.

The dynamic condition gives another expression for the growth rate

of the wave amplitude, namely

d
tlnA = (1 - )cot e, (Dynamic condition)

(1.12)d
dlnA = (1+;)tanB. (Kinematic condition).

The ratio of the two conditions gives the phase speed in an arbitrary

tilting state, namely

(1.13) 4 = cos2e-sin2 e = cos28.

This formula verifies the earlier values in the non-tilting staLes, and

it represents the phase velocity in an arbitrary tilting state as a linear

combination of the values in the non-tilting states. In particular it shows

that the wave from either non-tilting state approaches the state of stationary

phase 9-.O =45, 49-O.

With the value of 6 substituted, either equation (1.12) gives the

explicit value of the growth rate of the wave amplitude in an arbitrary

tilting state, namely
(1.14) d-inA = sin2e = d- incos 20.

By integration this equation gives the evolution of the wave from an arbitrary

initial state with the phase 9° and the amplitude A0 , namely

(1.15) A2 cos20 = As cos280 = As;

A2 is proportional to the kinetic wave energy, so ;a is the kinetic

wave energy transport, which accordingly is constant during the evolution

of the wave. As tho wave slows down, the kinetic energy of the wave increases
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a proportional amount. If the wave initially has a phase upwind from the

a-state less than 450 the wave moves downwind toward the a-state. While

approaching the a-state it speeds up and decays. It moves through the

a-state with maximum speed (the speed of the fluid) and minimum amplitude.

From the a-state the wave moves on downwind toward the state of stationary

phase e- = 450 and grows as it slows down. This evolution, which iss

expressed mathematically by the formula in (1.15), is represented graphically

by a rectangular hyperbola in a polar diagram with A,e as the polar coordinates.

Each point on this hyperbola represents a state of the wave. During the

evolution the "state-point" moves along the hyperbola toward increasing e

such that the radius vector moves with a constant areal velocity OA2 .

If the wave has a phase less than 450 downwind from the b-state it moves

upwind from this state, and the evolution is represented graphically by the

conjugate hyperbola which, during the evolution, is traced out in the sense

of decreasing 0 through the b-state and on toward asymptotic approach to

the growing state of stationary phase.

We note from (1.13) that the wave has two states of stationary

phase, namely the downwind state of e = 450 where the amplitude grows at the
5

exponential rate 1= kU, and the symmetrically located upwind state (e =-45s

where the wave decays at the same rate. These two states of stationary phase

are known as the normal modes of the vortex sheet. An arbitrary tilting

state of the wave may be represented as the resultant of the two normal

modes with the proper amplitude ratio. As one mode grows and the other

decays the resultant tilting wave moves on toward the asymptotic growing

state. An arbitrary tilting state of the wave may also be represented as

the resultant of an a-state and a b-state with the proper amplitude ratio.

As these two component waves move on toward their common state of stationary
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phase in accordance with the evolution in (1.15), their resultant has the evolu-

tion of the resultant wave which again obeys (1.15). The pair of normal

modes (the growing and decaying states of stationary phase) are thus closely

related to the pair of non-tilting states of the symmetric wave. We shall

consider this relationship further in the next section.

The evolution in (1.15) was derived from linearized theory which gives

a valid approximation only as long as the amplitude is a small fraction

of the wave length (kA s4l). Let us consider very briefly what happens

after the linear approximation brakes down. We have seen (1.12) that the

linear theory predicts the growth rate of the wave amplitude in the state

of stationary phase as l=kU=-2n/T, where T= L/U is the period during which

the fluid moves a wave length in the symmetric frame. If in the state of

stationary phase the wave at some initial time (t= O) has the amplitude A0,

its amplitude at the time t has grown to the value A= A exp(2xt/T). The0

wave amplitude doubles during the time interval t = O.11 T, while the fluid

moves a tenth of a wave length, so the motion appears to be highly unstable.

However, this exponential growth will only continue as long as the amplitude

is very much smaller than the wavelength, when the linearized theory gives

a valid approximation. Later on, as the amplitude grows, the non-linear

terms become important and can no longer be ignored. The non-linear evolution

must be studied with the complete non-linear dynamic equations, which must

be integrated numerically in short time steps. Such integrations were

first carried out by Rosenhead* in 1931. The integrat !on has been repeated

more recently by several people with high speed electronic computers. These

experiments have confirmed Rosenhead's earlier results. Instead of the

continuous distribution of vortex filaments along the vortex sheet, Rosenhead

* The Formation of Vorticies from a Surface of Discontinuity. Proc. Roy.
Soc. 1932, Series A, Vol. 134, p. 170-192.
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carried out the computations with twelve vortex filaments unifozmly

distributed per wave length. His results are shown in fig. la. The conzen-

tration of the vortex filaments toward the downwind nodes, which was predicted

by the linear theory, is clearly reflected by Rosenhead's discontinuous

model during the evolution from the initial symmetric state at the top to

the next state below a quarter period later. However, the amplitude grows

at a much slower rate than the linear theory predicts. As the non-linear

evolution continues, the growth of the amplitude soon stops, while the

vorticity becomes increasingly concentrated on the steepening downwind s-ope>o

The vorticity concentration is accompanied by a rolling up of the vortex

sheet around the downwind nodes, a feature which was noted already by

Helmholtz. The rolling up proceeds with increasing rapidity for the

filaments near the nodal points.

There can be little doubt that a vortex sheet which is subjected

to a small amplitude initial periodic disturbance, in the absence of

viscous diffusion of the vorticity, behaves essentially in the way Roenhead'c.

computations predict: The wave crests at first grow almost symmetrically

at the exponential rate predicted by the linear theory until their heights

are about one tenth of the wave length. The subsequent non-linear evolutior

is asymmetric with gradual concentration of the sliding vorticity toward

the nodal points on the steepening downwind slopes. As this process con-

tinues, the vortex sheet rolls up around the downwind nodes, and in the

end the vortex sheet appears broken up into periodicm y spaced vortices

with most of the vorticity confined within circular regions whose diameter

is about four tenths of the wave length. The time required for this process

from an initial deformation whose amplitude is one per cent of the wave

length to the final vortex is roughly the time it takes the fluid in either
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layer to move a wave length.

The vortex sheet is therefore an unstable hydrodynamical system.

The smallest disturbance, whether periodic or not, will result in an

evolution of the type described above during which the energy of the distur-

bance grows at the expense of the energy of the basic flow. This type of

hydrodynamic instability is known as shearing instability. The instability

will be partly surpressed if the fluid in the layers has different density

with the lighter fluid on top, as will be shown in the next section. The

vortex sheet between fluid layers of the same density exhibits the shearing

instability in its pure form.

There is, however, a stabilizing effect in the vortex sheet which we

have not considered, and which cannot be removed, namely the molecular viscous

diffusion of vorticity. This diffusion process is going on all the time in

real fluids in regions where there are vorticity gradients. This process

is of course particularly active near the center of the rolled up vortex

sheet, and tends to convert these regions into space vortices with continuous

vorticity distribution. However, the diffusion tends to modify the vortex

sheet itself even in the absence of any disturbance. This modification must

be taken into account if we wish to predict the behavior of disturbances

of a vortex sheet in a real fluid. This problem will be discussed in sections

6 and 7 below.

2. Symmetric waves in a statically stable vortex sheet. - Let now

the unbounded homogeneous fluid layers with the relative translation 2U

have different densities, with the lighter fluid (pa* p) above and the

heavier fluid (p= Ps) below the interface which separates the layers. The

static stability of the interface is measured by the non-dimensional parameter
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(2.1) s = (0 - 01 )/(P + P,) 1 1. (Quasi-symmetry condition).

This system is not symmetric, for the lower layer has greater inertia.

However, if the density difference is a small fraction of the average density

as indicated in (2.1), the asymmetry of the inertia can be ignored to a good

approximation. The justification of this quasi-symmetry approximation is

discussed in section 4.

If the symmetry approximation is justified, a symmetric wave with

the wave elements in (1.4) will preserve its symmetry at all times. The

evolutions of amplitudes and phase are governed by the two kinematic conditions

in (1.7) and a dynamic condition which describes the changes of the sliding

vorticity of the vortex filaments in the interface. These changes are most

clearly visualized in the a-state of the wave (top diagram in fig. 1). The

convergence along the interface concentrates the sliding vorticity toward thp

downwind nodes, as in the case of the statically neutral vortex sheet.

However, the fluid filaments at these nodes are now light at the top and

heavy at the bottom, and they are tilting downstream with the slope of the

interface, so the upstream side is heavier than the downstream side. The

gravitational buoyancy of this "over weight" will tend to return the nodal

filaments to their equilibrium level positions, and thereby induce them to

rotate in the sense opposite to the sliding vorticity. The resultant

vorticity change is less than the partial change from either of these causes.

If the convergence dominates, the wave moves downwind through the a-state

with a slower speed than the fluid. The wave moves upwind through the b-state

with unit speed. Therefore it has a state of stationary phase less than

45° downwind from the a-state, and its growth rate there, n= tan 08, is less

than unity. If the overweight dominates, the wave moves upwind through the

a-state and upwind through the b-state. It has no states of stationary phase.
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It moves upwind at all times with rhythmic variations of phase speed and

amplitude between the extreme values in the non-tilting states, while the

energy transport in the symmetric frame, 43A, remains constant.

The vorticity change from the overweight must be proportional to the

density difference and the f.-.ce of gravity, that is g(Oe- PI). It must

therefore be proportional to the non-dimensional parameter

(2.2) g = sg/kU2  (Richardson number),

where s is the non-dimensional static stability parameter in (2.1). The

parameter u is called the Richardson number of the wave.

To find the proportionality factor, we consider the a-state of the

wave for which the vorticity change from convergence is just balanced by the

change from the overweight, so the resultant vorticity change at the nodes

is zero. This wave is stationary in the a-state. It has a stationary neutral

a-state with no local accelerations, so the convective accelerations are

balanced by the acting forces (gravity and pressure force). But the con-

vective accelerations are not changed if the direction of the flow is changed

in one of the layers, say the lower layer (see top diagram in fig. 1). This

new field is also steady. But this is the field of a gravity wave in a

statically stable interface with no shear, in the frame which moves with

the speed U of the wave. The speed of propagation of the gravity wave in

the interface between unbounded layers is given by U0 = sg/k, or p= 1.

The wave mechanism of the gravity wave is very simple: Looking at the a-state

diagram in fig. 1 with the direction of the flow reversed in the lower layer

and inspecting the adjacent streamline channels above and below the inter-

face, we note that the upper flow has maximum speed over the crest and minimum

speed in the trough, while the speed below the interface changes in opposite

rhythm. This means that the interface filament on the crest has maximum
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positive vorticity and the filament in the trough has maximum negative vorticity.

The interface is one of the streamlines, and the filaments move downwind

along it with the speed U of the wave. On the journey from crest to trough

the positive vorticity on the crest is changed to the negative vorticity

in the trough. This change is caused by the overweight in the downstream

hill between crest and trough. For a given overweight (density difference)

the change proceeds at just the right rate when the filament moves along

the streamline with the speed U2 = sg/k.

The local vorticity change along a statically stable vortex sheet

is accordingly given by the formula

(u, -ug ( -( 0)U a (u, + u) (Dynamic condition).

The first term on the right represents the vorticity concentration by con-

vergence (see 1.10), the ýL-term gives the vorticity change from the overweight.

The two effects act in opposite sense, and the ratio of their magnitudes

is the Richardson number of the wave which is proportional to the wave length.

The (4= l)-wave has no local vorticity change. This wave has a stationary

neutral a-state which is dynaamically equivalent to the gravity wave we obtain

by reversing the direction of the flow in one of the layers.

The dynamic condition has been anticipated here from the speed of the

gravity wave. Because of its importance we shall now derive it from basic

dynamic principles. Following H~iland's procedure (l.c.) it is obtained

by integrating the equation of motion along a closed rectangular curve

with horizontal and vertical sides. Its diagonal is an infinitesimal segment

of the interface. The pressure is continuous across the interface (the

dynamic condition) so the pressure integral is zero, and we get

D v -ý d = 0
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The rectangular curve has only four infinitesimal segments, one horizontal

and one vertical in each layer. With second order (non-linear) terms ig-

nored the integral becomes
D

(2.3) .t (pul - osue )dx = g(pg - o0 )dzs.

We now introduce the quasi-symmetry approximation by assuming that the

difference of inertia between the layers can be ignored, and replace the

densities p, and pg in the inertial terms on the left by the average density,

1(pg + pl). The dynamic condition for the quasi-symmetric system then takes

the simple form

D 8z
(2.4) BCt(ul -us) = 2sg 8, (Dynamic condition),

where s is the stability parameter in (2.1). This condition is intuitively

clear: The sliding vorticity of the interface filament changes at a rate

which is proportional to the stability and the slope of the interface. The

lower half of the filament is heavy and the upper half is light, so the over-

weight tends to return the filament to its level position. With the individual

changes in (2.4) represented as the sum of local and convective changes, the

condition (to the linear approximation) takes the form

S(ul -ug) = -U .(u, + us ) + 2sg-F . (Dynamic condition).

Here the local change of the sliding vorticity along the interface appears

as the resultant of two effects, namely: (i) the concentration of the sliding

vorticity of the basic flow by convergence of the vortex filam6nts along

the interface, and (ii) the action of the overweight of the filaments which

tends to return them to their level positions. To compare the relative

magnitude of the two effects we evaluate the interface slope from the difference

of the kinematic conditions in (1.1), which gives

Oz2U1 = w, -we = T= (*I %.
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With this value of the slope substituted, the dynamic condition takes the

form which was anticipated from the dynamics of the gravity waves, namely

a a
(2.5) (U, -u ) = -(1 -)U- (uI +u). (Dynamic condition)

Having derived this condition from basic principler., it now includes the theory

of the gravity wave as equivalent to the a-state of the (L&= 1)-wave, and

predicts the speed of this wave as U = ag/k.

With the wave elements of the symmetric wave in (1.4) substituted,

the dynamic condition for this wave becomes

(2.6) E(AsinB) = Asine + ; Acos = (1- &)Acos6.

Applied to the a-state of the wave (e= O) it shows that the wave in that

state has the speed a =1- . The short (p<l)-waves move downstream, the

longer (P>l)-waves move upstream through the a-state. All waves move up-

stream through the b-state with the speed U of the flow, governed by the

kinematic conditions which are independent of the static stability across

the interface. So the short waves are unstable with a growing state of

stationary phase, while the long waves are stable, moving upstream with

rhythmic variations of phase speed and amplitude.

The details of the evolution are obtained by comparing the two equivalent

expressions for the growth rate of the wave amplitude from the kinematic

and dynamic conditions,

d-lnA = (1 - i- ;)cot 0, (Dynamic condition)

(2.7)
d

irlnA = ( + ;)tan. (Kinematic condition).

The ratio of these give the phase speed in an arbitrary state as a linear

combination of the non-tilting speeds

(2.8) U = (i-)coSOe- sine8 = 8aC0 + cs b sin3 8 .
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The short (p <l)-waves have two states of stationary phase, namely

(2.9) taego-= / 1- o=0).

The dynamic and kinematic conditions give two equivalent values of the growth

rate in these states, namely

ln A) = n = (l- )cots0 = e cote8

(2.10)

lnsA) = n = tanes = -etanes

and their product determines the growth rate

(2.11) nf = beeb = _- 1 = -_m.

The growing state (n > 0) has the positive phase e8 downstream from the a-state.

The decaying state (n <0) has the same negative phase located symmetrically

upstream from the a-state.

The long (P > 1)-waves move upstream with rhythmic variations of speed

between the extreme values in the non-tilting states.

The evolution of the wave from an arbitrary tilting state is obtained

by substituting the value of ; in (2.8) into either one of the basic conditions

(2.7), which gives

•tlnA = (2- p)sin e cos = - n

The integral of this from an arbitrary initial state with the amplitude

A and the phase e0 is

(2.12) A3; = A3[(l - t)cos 2 - sin20) = A2 [(l - )cos'e° - sin eo.

It shows that the energy transport of the wave is constant. If the initial

state is an a-state with the amplitude Ao = Aa, the equation becomes

(2.13) t(1- e tAcoos sis h ) i ( ) l i

For the short (kt <l)-waves this is a hyperbola in a (A,G)-pola~r diagram
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with the asymptotic slope tan 9 = _- = n. In the evolution from the

a-state (9= 0) the area between the hyperbola and the asymptote is swept

out with the constant areal velocity

A2 0 = YA
2 e = 2 (A'tan0 )n,

a a a S

so the areal velocity is proportional to the asymptotic growth rate, as

indicated in fig. 2. The evolution from an initial b-state (0= 900) is

represented by the corresponding conjugate hyperbola. The evolution from

an arbitrary initial state (Ao,00) is obtained by choosing the corresponding

point on the hyperbola as the initial point.

For the long (u,>])-waves equation (2.13) is an ellipse with the

amplitude ratio Aa/A 1 -l--m, which is traced out in the upstream sense

of decreasing 9 during the evolution of the wave. The area of the ellipse

is swept out at the constant rate

"WBA 2 = eA 2 
- A* = 3'mA AA

a a b b a b

so the entire area of the ellipse, nAaAb, is swept over during the time

T=2n/m. This is the time during which the wave moves two full wavelengths

while the interface performs a complete standing oscillation. So T is the

period and m in (2.11) is the frequency of these stable oscillations. We

note that the asymptotic growth rate of the unstable waves and the frequency

of the stable waves are both equal to the geometric mean of the absolute values

of the phase velocities in the non-tilting states, measured in the units

of U and k.

All waves move upwind through the b-state with unit speed. The 'tab1l

(ik <2)-waves move slower through the a-state so they decay during the passage

from the a-state to the b-state. The longer (i.>2)-waves move with a speed

greater than unity through the a-state, so these waves grow from the a-state

to the b-state. The (L= 2)-wave is a neutral wave which moves upwind with
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constant unit speed and constant amplitude.

3. Relation between the non-tilting states and the normal modes of

the symmetric wave. - As mentioned in section 1, the states of stationary

phase of the unstable symmetric waves are called the normal modes because

the wave grows at a constant exponential rate. The statically stable

quaei-symmetric vortex sheet between unbounded layers, defined by the parameters

(U,s), has a pair of unstable normal modes of this type for every wave length

shorter than the stationary a-wave. For longer wave lengths the normal modes

are a pair of neutral waves with the interface deformation propagating to

the right or to the left with constant amplitude and the constant non-

dimensional phase speed m in (2.11) relative to the symmetric frame. In

the frame which moves with the mode the interface is a stationary streamline.

The speeds of the flow in the layers relative to this stationary frame have

the ratio (1- m)/(l + m), and the amplitudes of the upper and lower part of

the wave have evidently the same ratio. So the stable modes are not symmetric.

However, the resultant of such a pair with the same amplitude is the stable

symmetric wave with the standing oscillation of the interface and the upstream

propagation of the wave as described at the end of section 2. The properties

of the long stable (p >l)-modes are therefore known implicitly from the stable

oscillations.

The boundary conditions (2.7) for the symmetric wave gave the relations

(2.10) between the phase velocities in the non-tilting states and the growth

rate and phase of the unstable modes, namely

(3.1) 8a = ntanes, eb = -ncote , (n>0)

where e denotes the phase of the growing mode measured positive downwind from

the a-state. These formulas are characteristic of all types of symmetric
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waves, regardless of the physical mechanism which governs their propagation

and growth. To show this, consider an arbitrary pair of unstable modes with

the growth rates ±n and the phase + 0s. In each of these modes taken

separately the upper field has the evolution

+ = 1ent cos(x- 
8 )

(3.2 e o (n >0)$i-= ý2e-nCos8(X + 9s)

where an arbitrary amplitude factor is left out in each field. The

resultant of these modes with equal initial amplitudes has the upper field

(3.3) #i = chntcos8 cosx + shntsine sinx = Acos(x-e).

This is a symmetric wave starting from an initial a-state (8 = t= 0) with

the amplitude Aa= cos 9, and the phase of the wave has the evolution

(3.4) tans = tans 8 thnt.

The wave moves toward the asymptotic state e- e as t-.-, with the phase5

speed

(3.5) e = n tan Os (cos 9/ch nt)2 = n tan Os(Aa/A) 2 ,

in other words with the constant energy transport ;A 2 = n tan 8 A2 . With
saa

ch- 2 nt= 1 -th 2 nt eliminated, using (3.4), the phase speed formula becomes

(3.6) = n tan escos 2  - n cot esSin2
9 = 8 aCosas + bsin82.

The result to the right is obtained by applying the formula to the non-tilting

states (0= 09900). But these values of the phase speeds in the non-tilting

states are the values in (3.1) which were obtained by examining the symmetric

wave as an entity in its evolution from an arbitrary state. In other words

the symmetric wave has the same evolution whether it is regarded as an

entity or as a resultant of normal modes. This is a consequence of the linear

theory. If several component waves satisfy the linearized boundary conditions,

their resultant will also satisfy these conditions at all times. We may

therefore use the spectrum of normal modes with their simple exponential
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growth rates to examine the early linear stage in the evolution of arbitrary

non-periodic local initial disturbances by representing these local distur-

bances as the resultant of the entire spectrum of symmetric waves with their

amplitudes and phase properly adjusted to fit the local disturbance at

the initial moment, using the general method of Fourier. The evolution

of the local disturbance, for as long as the linear approximation is valid,

is then obtained as the resultant of the separate evolutions of the component

symmetric waves, which is known from section 2.

If the growth rate and stationary phase of the growing mode are known,

the phase velocities in the non-tilting states are given by (3.1). Con-

versely if the phase velocities in the non-tilting states are known the

growth rate and phase of the modes are given by the corresponding formulas

(3,7) n2 = -eaeb -Mi2 tanSs = -a/b•

These formulas define both the growing and the decaying mode. They have

the same positive and negative growth rate and the same stationary phase

downstream and upstream from the a-state. The sign of the phase of the

growing mode (n>O) is given by the sign of ;,.

All the characteristics of the symmetric wave may then be obtained

either from the growth rate and phase of the modes (n,9s) or from the phase

velocities in the non-tilting states of the wave (0a.,k). Either pair

of parameters may be derived independently of the other pair, which then

in turn are obtained from the interrelated formulas in (3.1) or (3.7).

The question of which pair should be selected for primary derivation depends

upon the circumstances, and sometimes it is a matter of taste. The more

mathematically inclined student would probably in most cases prefer to

determine the normal mode pair (n,es) first. The phase velocities in the

non-tilting states (ea,eb) on the other hand are often accessible by a
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simple physical consideration, and may sometimes be derived intuitively

from fundamental physical principles with very little mathematical labor.

However, both sets of parameters are useful tools for the physical

analysis of the wave mechanism: If the wave moves in opposite directions

through the non-tilting states it starts growing when it leaves these

states, and it approaches from either side the growing state of stationary

phase whose growth rate and phase are uniquely determined by the non-tilting

phase speeds. If the wave moves in the same direction through the non-

tilting states it is a progressive wave in that direction with rhythmic

variations of speed and amplitude in such a way that the energr transport

OAS remains constant. Meanwhile the interface performs standing oscillations,

with the frequency equal to the geometric mean of the non-tilting phase

speeds. Both growth rate and stationary phase are imaginary in the stable

wave. But the formula for the field in (3.3) is real and describes the

evolution of the stable wave from an initial a-state.

4. Justification of the symmetry approximation. - We shall now

examine the magnitude of the error we make in the quasi-symmetric wave

theory by ignoring the kinematic effect of the density difference in the

dynamic boundary condition. To determine the error we must find the behavior

of the waves in a system with arbitrary densities in the layers, and examine

how much it departs from the behavior of the quasi-symmetric waves when

the density difference is small.

To make the analysis a little more general we shall let the layers

be bounded by rigid horizontal planes at equal distances above and below

the interface, so both layers have the same finite depth h. This system

has a new length parameter h, besides the wave number k, but the theory for the
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waves in the bounded system must reduce to the wave theory for unbounded

layers for the waves which are very much shorter than the depth of the

layers (kh~wl). In fact, we see from (1.3) that the amplitude of the wave

in the unbounded system decreases exponentially with the distance from the

interface and is reduced to about 4 per cent of the central value at a

distance of half a wave length from the interface. If the rigid boundaries

are further away they have very little effect on the waves. However, if

they are closer, the streamfunction of the wave must be such that the vertical

motion 8#/Ox is zero at the boundaries. Since the streamfunction is

periodic in the horizontal direction, this means that it is zero at the

outer rigid boundaries. The motion is of course still Laplacean, so the

streamfunction must be a linear combination of the basic solutions in (1.3)

which is zero at the height h above and at the depth h below the inter-

face. In other words, the streamfunction of the wave in the bounded

system must have the form

= sh k(h - z-)/shkh, (Upper layer)
(4.1)

= sh k(h + z)/shkh, (Lower layer)

where, as before, #1 and • are the values in the two layers at the interface

level. The corresponding horizontal velocities are

u = #1 k chk(h -z)/shkh, (Upper layer)
(4.2)

- u = t k chk(h +z)/shkh. (Lower layer)

We see that the wave has no vertical wind-shear near the rigid boundaries.

This may be anticipated from the fact that the irrotu. -onal flow is here

parallel to the boundaries, so both the curvature and shear are zero. We

shall consider the consequences of this circumstance later.

If the lower fluid is much heavier than the upper fluid, the inertia

of the system is highly asymmetric with respect to the interface. It is
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therefore no reason to expect that an initially symmetric wave with the

wave elements in (1.4) will remain symmetric during its evolution. Rather

the contrary must be expected. We shall therefore investigate whether this

asymmetric system has normal modes for which the interface deformation

has the evolution

(4.3) z. = Aso X Real part of expi(kx+mt).

The frequency equation, m= m(k) for the mode is found by applying the

two kinematic conditions (1.1) and the dynamic condition (2.3) to the interfac-

deformation. If for a given value of k the frequency equation gives a real

positive value for m, the mode is a stable neutral wave which moves in the

symmetric frame toward negative x with the phase speed m/k. If the frequency

equation gives an imaginary frequency m= -in, the mode is an unstable wave

whose amplitude grows at the exponential rate n.

We shall again represent the boundary conditions non-dimensionally

by using units of length and time such that k= U= 1. The local change in

the symmetric frame of the deformation in (4.3) is then

8zS = m 8za sz
-a-_ is -- -• = aT ,8x

so the kinematic conditions (1.1) for the mode are

(4.4) zs = *I/(m+l) = 1/(m-l).

The dynamic condition in (2.3) is

D 8zs
ft(Olu1 -03us) = g(OV 01 )-TX_

From (4.2) the horizontal accelerations at the interface level are

= cthkht; D-Dt= cth kh D (k=l)

or with the streamfunction values of the mode substituted from (4.4)
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SDz Oz 8*= (m +1) cth kh -Vt- (m +1)0 cth kh-•,_

SDz 8z
- =(m -1) cth kh -(m -1)2 cth kh-a

With these substituted the dynamic condition becomes

0p(m+i) 2 +p(m-l)= g(.- ol)th kh.

This is the frequency equation for the normal modes (4.3) in the statically

stable vortex sheet between bounded layers. The Richardson number of the

waves in the bounded system is defined as

(4.5) '. = (sg/klTl)th'kh.

It reduces to the value in the unbounded system when the wave is very much

shorter than the depth of the layers. With this value of p substituted the

frequency equation becomes

Mm-2sm = 1-i

or, with so added on both sides,

(4.6) (m-s)2 = - s2).

If the density difference is a small fraction of the mean density (s Cl) the

frequencies of the normal modes are obtained with good approximation by

ignoring s in (4.6), giving ma = u.-1 = -no, which is the value we obtained

in (2.11)by introducing the quasi-symmetry approximation in the dynamic

boundary condition. We can now test the approximation quantitatively by

comparing the correct value of the frequency in (4.6) with the approximate

value for any given value of s. Atmospheric inversions seldom exceed a

temperature jump of 10°C. The corresponding s-value is less than 0.02, so

practically no error is made by putting 1-s 3 = 1 in (4.6). The quasi-

symmetric value of the frequency differs from the correct value by an amount

roughly equal to a. The quasi-symmetric theory is good to this approximation.

When the density difference between the layers is appreciable (as for

example the interface between the ocean and the atmosphere), the dynamic
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asymmetry across the interface can of course not be ignored. In the limiting

case with zero density in the upper layer (a = 1) the system becomes one single

layer with a free surface, and the frequencies of the normal modes in this

layer are given by

(m- i) = = (g/kU)thkh.

The normal modes (4.3) are here two familiee of neutral gravity waves which

move in "the symmetric frame" toward negative x with the non-dimensional

phase velocities m = i/*L. The fluid in the layer moves in the symmetric

frame toward negative x with the speed U = 1. Relative to the fluid the modes

move of course symmetrically in opposite directions with the same speed,

U2 = (g/k)thkh.

V•hen the densities in the layers have arbitrary values with the heavier

fluid in the lower layer, the static stability s has an intermediate value

between the limiting values zero and one, and the normal modes of the system

have the frequencies in (4.6). The long modes, P>i-s2, have real frequen-

cies, whose values may be represented graphically in a non-dimensional m,j.-

diagram (see fig. 4) by a parabola whose vertex has the coordinates

m = sms (vertex of dispersion parabola)
s= 1- s2.

The parabola has the same shape for all values of a. As s is changed con-

tinuously from zero to one, the vertex moves along a similar inverted par-

abola, m2 = 1- Us' which connects the vertex points of the limiting vertex

parabolas (s = 0,1). With the coordinates of the vertex substituted, the

frequency equation (4.6) becomes
2

(4.7) (mi-im) = $-AS"

The long (> > )-modes in (4.3) are neutral waves which propagate in the

symmetric frame with the non-dimensional phase velocities m in (4.7). Let
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us now use another frame of reference which moves toward negative x relative

to the symmetric frame with the speed Us = %U = 9U. In this frame the non-

dimensional phase velocity of the mode is m° = m- ma, and the dispersion

equation for the mode has the simplest possible form, namely

(4.8) = s

The frame moves relative to the symmetric frame with the speed U such that

(o + P, )us = pSU- p1 U. It is the frame in which the center of mass of the

system is stationary. The long stable neutral modes (p >& 8) move in opposite

directions relative to the center of mass of the system with the same phase

velocity (p - s)P. The short unstable (tj<ia)-modes have stationary phase

relative to the center of mass and they grow or decay at the exponential

rate (ts 0) The transitional ( j = Is)-mode is a neutral wave which is

stationary relative to the center of mass.

All the dispersion (or frequency) parabolas in fig. 4 have one point

in commonwith the coordinates m = 0, p = 1. This means that, regardless of

the density difference between the layers, one of the stable modes of the

system is stationary in the symmetric frame, namely the mode for which

U2 = (sg/k)thkh. If for this stationary mode the direction of the flow is

reversed in one of the layers, the acceleration remains unchanged everywhere.

So the new situation is also stationary. But this is the field of a gravity

wave in the frame which moves with the speed U of the wave relative to the

fluid in the layers. In other words, the gravity wave propagates through the

fluid with the speed U which makes its Richardson number p in (4.5) equal to

unity. This speed gives the overweight the right time to reverse the vorti-

city of the interface filaments during their passage from crest to trough.

If the wave is very much shorter than the depth of the layers (kh) 1),

the hyperbolic factors in (4.1 and 4.2) are very nearly equal to the simple

exponential functions, exp(Tkz), and the Richardson number of the wave in
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(4.5) has very nearly the value sg/kUO of the unbounded system., The boundaries

have no appreciable effect on the waves which are much shorter than the depth

of the layers. The short wave approximation with the boundary effects ignored

is in fact quite good if the depth of the layer is more than half a wave length.

For waves which are very much longer than the depth of the layers (kh-C 1) we

obtain another long-wave approximation by ignoring squares and higher powers

of kh in the general formulas. It turns out that the same long-wave approxi-

mation is obtained when we ignore the vertical acceleration in the vertical

dynamic equation, and take the pressure distribution along the vertical to be

hydrostatic.

5. The quasi-static approximation. - Let us first consider the approxi-

mation as a long wave approximation of the general theory in se.,tion 4. If

khC 1 we may develop the hyperbolic functions (4.1 and 4.2) in series and

ignore higher powers of kh. The streamfunction in the upper layer to the

order of (kh)2 is

(5.1) = #i i(_)[>+).= h - ý l+1 4&- 2) (kh)a (z > 0).

To the same order of approximation the upper horizontal velocity field is

(5.2) hu = *,[I+ ()j - h + y)(kh)] (z>O).

The Richardson number of the wave, to the same approximation, is

(5.3) = (sgh/o )[Cl - (kh).

If the wave is much longer than h, the factors in the brackets in these formulas

differ from unity by an amount less than (kh)3. The long wave approximation is

obtained by taking these factors equal to one. The error in this approximation

is only a fraction of (kh) 2 .

We note that the long-wave approximation gives a motion with no vertical

shear. Since the motion is irrotational it must have enough shear to compensate
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for the curvature of the streamlines. But the streamlines have very slight

curvature in the very long waves, and the shear is therefore so slight in the

long waves that it may be ignored without significant error.

The long wave approximation gives the vertical velocity at an arbitrary

level in the upper layer as

(5.4) w = (1 - -P (h-z) -au (z>O)
h 6x - ax

We note that this approximation satisfies the solenoidal condition 7.v= 0 for
the incompressible fluid. On the other hand, the lamellar condition 7 X v = 0

is slightly violated, since the wind sheaiý of the slightly curved flow is

ignored. The vertical velocity in (5.4) increases linearly from zero at the

upper rigid boundary to its maximum value at the interface level, namely

(5.5) w, = h L=- Dhj _ Dzs
ax Dt BF

In the absence of shear the vertical fluid column remains vertical, and its

height h, decreases at the rate of the vertical motion at its base, which in

turn is equal to the horizontal divergence in the column.

Let us now compare this long wave approximation with the quasi-static

approximation which is made when the dynamic effect of the vertical accelera-

tion on the pressure is ignored, so the pressure distribution along the vertical

is taken to be hydrostatic. The horizontal and vertical dynamic equations for

quasi-static flow are therefore

(5.6) = - (Quasi-static equations)

Pg = - ap/az.

Let us apply these equations to an arbitrary motion of a homogenous fluid

layer. Since the pressure distribution along the vertical is hydrostatic, the

vertical thickness of the isobaric layers is the same everywhere in a homo-

genous layer. All the isobaric surfaces have the same shape and may be gene-

rated by displacing one of them along the vertical. This means that the
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horizontal pressure gradient has no variation with height, and therefore the

horizontal acceleration has no variation with height in a quasi-static motion

of a homogenous fluid layer. If the motion has no vertical shear at a

certain time, no shear can develop later. The vertical fluid columns will

remain vertical at all times. We have seen that this condition is very nearly

satisfied in waves which are much longer than the depth of the layer, so the

motion in these waves obeys the quasi-static approximation with good accuracy.

The kinematic conditions in (5.5) which were derived from the long wave

appzoximation may also be derived from the quasi-static theory, because they

are the consequence of the condition that the motion has no vertical shear.

In other words, the long wave approximation is equivalent to the quasi-static

approximation, and vice versa. It may be noted from (5.5) that the ratio

between the amplitudes of the vertical and the horizontal components of thc

motion is equal to kh, that is the ratio between the vertical and horizontal

scale of the motion. Quite generally then, the quasi-static equations (5.6)

may be used as a good approximation for the description of the motion if the

ratio between the horizontal and vertical scale of the motion is small. The

percentual error we make by using these equations has the order of the

square of this ratio. We shall show later in Chapter II that the same con-

dition for the quasi-static approximation applies to compressible flow with

a continuous variation of the density along the vertical.

The Richardson number has the constant value sgh/U for all waves which

are long enough to obey the quasi-static approximation with good accuracy.

This means that the long quasi-static gravity waves in the resting double

layer all move with the same phase speed CL through the fluid, where CL = sgh.

The quasi-static waves are non-dispersive. This speed exceeds the correct

value by about 0.7(kh)a per cent. The phase speed CL of the long quasi-static
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gravity waves may be taken as a convenient measure for the static stability

of the resting double layer. When the layers have the relative translatior.

2U, the Richardson number for the corresponding quasi-static Helmholtz waves is

(5.6) L = sgh/UL = (CL/U)2. (Quasi-static)

It is a non-dimensional constant which includes all the physical parameters

of the system, and it measures the ratio between the static stability and the

shear across the interface. In the quasi-symmetric systems (s4Z 1), the

Richardson number defines the dynamic properties of the quasi-static waves:

If the static stability dominates (P >l) the quasi-static waves are stable

and have the frequency m = /'T. If the shear dominates (jj.<l) the quasi-

static waves are unstable with the growth rate n = /Fj•. In the systems

with arbitrary densities in the layers the transition from stable to unstable

quasi-static waves occurs at a Richardson number less than unity, namely

2
1s.

6. Lateral diffusion of vorticity from a shear layer. - In order to

see how the vorticity diffusion effects the dynamic behavior of a vortex

sheet, we shall examine how the undisturbed vortex sheet is modified by the

diffusion process.

Let us begin by considering a more general system with the vorticity

concentrated in a central layer between unbounded irrotational layers. The

boundaries between the central layer and the outer layers are not sharp.

The vorticity is supposed to decrease symmetrically in both directions from

a maximum value at the center of the shear layer and approach zero asymp-

totically with increasing distance from the center level (see fig. 6).

The diffusion process is particularly simple if the vorticity distri-

bution at some initial moment is given by the Gaussean error function
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(6.1) q = qo exp[ -r(z/d)*' = dU/dz.

In the symmetric frame which moves with the fluid at the central level the

asymptotic maximum speed in the outer layers is

Uo = q dz = qo f e'n(z/d)gdz =qod.
0 0

With this value of q% substituted, the Gaussean vorticity distribution in

(6.1) becomes

(6.2) q = (2Uo/d) exp[- -(z/d)8 ].

The parameter d may be regarded as the depth of the central layer in an

"equivalent" three layer system with the constant central level vorticity in

a shear layer of depth d between unbounded irrotational outer layers which

have the relative translation 2Uo.

If the vorticity distribution in the layer is Gaussean at any one time,

it will remain Gaussean at all times, while the depth grows with time. This

is readily seen by substitution of q from (6.2) into the Navier-Stokes vorti-

city equation for two-dimensional shear flow, namely

(6.3) q = vOq = pq". (v = kinematic viscosity)

Here the accent denotes height differentiation and the dot denotes local time

differentiation in the symmetric frame. The logarithmic form of (6.2) is

ln q = ln(2Uo) -ln d-n(z/d)a.

The logarithmic height derivative is

q'/q = -2nz/de.

The second height derivative is

T q

The logarithmic time derivative is

+°



-36-

With these substituted the vorticity equation (6.3) gives

(6.4) d = 2rv/d,

which has the integral

e-• d:= 4nv(t- to).

The rate of growth of the depth of the Gaussean shear layer is proportional

to the inverse depth of the layer. We may choose the initial shear layer as

thin as we like. In the limit, if we choose do -. 0, we have initially a vortex

sheet, and we see that the vortex sheet immediately is changed by the viscous

vorticity diffusion into a shear layer of finite depth, and this layer grows

in thickness at the rate in (6.4). It is clear then that the dynamic theory

for the instability of the vortex sheet in section 1 (which is based on the

assumption that the vortex sheet retains its identity at all times) is not

very satisfactory. To improve on the theory we must examine the instability

of a shear layer of finite depth.

7. The instability of a constant shear layer. - The Gaussean shear

layer which develops by the vorticity diffusion from a vortex sheet is not

easy to discuss mathematically. We shall therefore in this section examine

a shear layer of depth d with the constant wind shear,

q = 2U/d,

between unbounded irrotational outer layers which have the relative trans-

lation 2U. All three layers have the same constant density. We shall

ignore the vorticity diffusion at the boundaries of the shear layer.

Let the upper interface at some initial time be given a small ampli-

tude sinusoidal deformation,

(7.1) z = A8 cos kx, (kA 1)

while for the moment the lower interface is undeformed. Since the vorticity
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is conserved in this system (see 6.3), this deformation means that the con-

stant vorticity in the shear layer has been added in the sinusoidal segments

above the interface level, and the same vorticity is removed from the segments

below the interface level.

The field associated with the sinusoidal deformation of the upper inter-

face may be represented as the resultant of two component fields. One component

is the undisturbed shear layer with the undeformed interface. The second

component, the v-field, is irrotational everywhere except in the areas of adced

vorticities between the interface level and the deformed interface. 1t is easy

to see what the general appearance of this periodic field must be. It ha's a

slight asymmetry with reference to the interface level since all the positive

vorticity is above and all the negative vorticity is below the interface level.

However, if the interface amplitude is a small fraction of the wave length,

this asymmetry may be ignored (the linear approximation). The field is then

very nearly symmetric with reference to the interface level with sinusoidal

distribution of vortex filaments along the interface level and zero vorticity

elsewhere.

All the vortex filaments may be grouped in pairs distributed symmetri-

cally with reference to any one of the nodes. The vertical line through the

node is the central straight streamline of each pair, so it is a streamline

of the resultant periodic v-field.

It is readily seen that this periodic field will propagate the defor-

mation upwind relative to the fluid at the interface. The wave speed is

obtained by application of Stokes's theorem to a small rectangular section

of the sinusoidal segment of added vorticity. The area of this section is

zl dx. The contribution to the circulation round the segment along the verti-

cal sides, z1 w, are small of the second order. The circulation round the
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area zidx to the first order (linear) approximation is

(7.2) (u -u Idx u qzs dx - (2U/d) zdx. (The dynamic condition)

Here ue denotes the tangential component of the Laplacean v-field above the

sinusoidal segment of added vorticity and u- denotes the tangential component

below. This is the dynamic condition for the deformed interface.

Let the v-field be represented by a streamfunction (as in 1.2), whose

value at the interface level (zuO) be denoted by *1. Above and below the

interface the streamfunction (as in 1.3) has the values

-kz kI= e I, * = te

The tangential wind shear across the segment of added vorticity is then

u+- u = 2k.

With this value substituted the dynamic condition (7.2) takes the simple form

(7.3) *1 = (u/x)z1  Ox = kd)

This field propagates the deformation upwind relative to the fluid with a

certain phase velocity Co. In a frame of reference which moves with this

wave the wave is stationary and the deformed interface is one of the stream-

lines, having the slope

8z= , W- -, or *1 z Coz 1 . (The kinematic condition)

This is the kinematic condition at the interface. The kinematic and dynamic

conditions combined give the intrinsic upwind phase velocity of the wave at

the moment when only the upper interface is deformed, namely

(7.4) Co - U/n, Co/U - L/2xd.

This wave is called a Rayleigh wave after Lord Rayleigh who discovered it in

1880.0

The v-field associated with the added vorticity at the upper deformed

interface gives a vertical motion to the fluid particles at the lower initially

0
Lord Rayleigh: On the Stability and Instability of Certain fluid Motions.

Scientific Papers. Article 66, Vol. I, p. 474.
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level interface. In the next instant the lower interface will therefore have

a sinusoidal deformation with crests and troughs in phase with the upper

interface nodes. This lower deformation in turn is associated with a periodic

component field of the type (7.3) centered at the lower interface. The evolu-

tion of the wave is therefore governed by the resultant of the two periodic

fields from the added vorticities at both interfaces, and this evolution is

not simple.

However, if at the initial moment both interfaces are given equal

sinusoidal deformations with the same amplitude and phase we have a symmetric

wave. Because of the kinematic and dynamic symmetry of the shear layer this

wave will remain symmetric at all times. Similar to the Helmholtz wave in

the vortex sheet (see fig. 1) we call the non-tilting state of the symmetric

Rayleigh wave with the interfaces deformed in phase and the upper and lower

component fields in opposite phase the a-state of the wave. The second

non-tilting state with the interfaces deformed in opposite phase and the

component field in phase is called the b-state. (See the wave diagrams in

fig. 7.)

In the a-state the upper and lower component fields have opposite

phase. The straight vertical streamlines of each component (passing through

the interface nodes) coincide but they have opposite sense. The upper com-

ponent, if operating alone, would propagate the upper deformation intrinsically

upwind through the fluid with the speed U/ft. The lower component field tends

to oppose this propagation. However, since the intensity of the field decreases

exponentially with the distance from the interface, it is reduced by the factor,

(7.5) c = e"_' (n = kd)

at the upper interface level. Its contribution to the propagation of the upper

wave is reduced by the same factor. The upper deformation therefore propagates
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intrinsically upwind through the a-state with the speed

(7.6) C. = U U- O)IA.

But the fluid at the interface moves downwind with the speed U in the symmetric

frame, so the upper wave moves downwind through the a-state with the speed

U -C, in the symmetric frame. Because of the symmetry the lower wave has the

same downwind speed.

In the b-state with the interfaces deformed in opposite phase (see the

lower wave diagram in fig. 7) the upper and lower component fields have the

same phase. They propagate the deformations intrinsically upwind through the

fluid with the speed

(7.7) Cb = U(l + C)/K.

In the symmetric frame the symmetric wave moves downwind through the b-state

with the speed U-Cb. The arithmetic mean of the intrinsic phase velocities

in the non-tilting states is

(7.8) (C, + Cb) U/ = Co.

It is readily seen that the wave has this intrinsic speed in a state half way

between the non-tilting states.

The phase velocities in the non-tilting states are represented graphi-

cally by the C,-line and the Cb-line in the diagram to the left in fig. 7.

The Co-line is the straight broken line through the origin and the point

(2nd, U). It represents the contribution to the propagation of the deforma-

tion from its own local field. This contribution is proportional to the wave

length. The Ca-line and the Cb-line are located symmetrically on either side

of this line. For waves shorter than the double depth of the shear layer

(K>3) the exponential term m= e• <0.04, so for these short waves the C,-

and Cb-lines are practically coincident with the central Co-line. The reason

is that the intensities of the component fields are insignificant at the level
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of the other interface in the very short wave, so each component wave behaves

as if the other were absent. As the wave length is increased the action from

the other component field becomes increasingly important. The C,-line departs

more and more from the central Co-line, and the Cb-line departs the same

distance to the other side. For the (N= 1)-wave the departure is U/e. Ulti-

mately for waves which are very much longer than the depth of the shear layer

(KCl) we may develop the exponential term in series and ignore the higher

terms

C. =(l - en) -. U(1 -W). (for L 2%d).

The C,-line has the long wave asymptote C, = U. Using this result in (7.8) we

find that the Cb-line has the asymptote C -. U(2/x-1). It meets the C.-

asymptote at Kt= 1 and has twice the slope of the Co-line.

Since C. < U for all wave lengths, all waves move downwind through the

a-state in the symmetric frame. As soon as the wave leaves the a-state the

lower field begins to augment the amplitude of the upper deformation and

vice versa. The wave starts growing when it leaves the a-state. In the

a-state the shear layer as a whole has a sinusoidal deformation with uniform

depth everywhere. As the wave moves downwind from the a-state the shear layer

becomes periodically inflated and deflated with the inflated parts centered

downwind from the interface crests. In these respects the shear layer and

the vortex sheet have a similar behavior. In both the symmetric wave moves

downwind through the a-state while the vorticity becomes concentrated towards

the nodes downwind from the crests.

The wave of Cb = U has a stationary neutral b-state. This wave has

the wave number
-X

(7-9) Cb = U: K = l+e =.2785* L= 4.9d).

It is the wave length for which the Cb-line meets the U-line in fig. 7.
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Waves shorter than the stationary neutral b-wave move downwind through

both non-tilting states, so they move progressively downwind at all times.

They pass through the a-state with maximum speed and minimum amplitude. They

grow and slow down after leaving the a-state and pass through the b-state

with minimum speed and maximum amplitude. They are stable waves with rhythmic

variations of speed and energy between the extreme values in the non-tilting

states.

The longer (K <x )-waves move downwind through the a-state and upwind5

through the b-state. From either non-tilting state they approach asymptotically

a state of stationary phase with a downwind tilt from the a-state, as shown in

fig. 7 for the wave K= 0.8. As this asymptotic state of stationary phase is

approached the wave keeps on growing, ultimately at the rate which is character-

istic for the state of starionary phase. This growth rate must be proportional

to the instantaneous strength of the component fields, and hence to the instant-

aneous interface amplitude A . Denoting the proportionality factor by n, thes

instantaneous growth rate is dA/dt = nAs. In the asymptotic state of stationary

phase the long symmetric waves in the shear layer grow at a constant exponential

rate.

The evolution of the symmetric wave from an arbitrary state is obtained

by applying the boundary conditions to such a state. The deformations of the

interfaces in an arbitrary symmetric state are

z, = A cos (kx -a) = real part of ( eikx
(7.10)s

zg = A cos (kx+a) = real part of (,-e ik).
5

The phase a is measured positive downstream from the a-state. The complex wave

parameter C has the value

(7.11) C A ei8 = e-i1.

The deformation z, of the upper interface is associated with a Laplacean



field whose streamfunction has the interface level value *# = (U/K)zl, and

whose intensity at the lower interface is reduced by the factor a= e" The

kinematic conditions are that the interface particles are moved Jointly by

the two component Laplacean fields associated with the interface deformations.

The vertical velocity at the upper interface in non-dimensional units (k= U= 1)

is

(7.12) W, R --(- O . h- = •- K "

With the deformations of the symmetric wave in (7.10) substituted, its ampli-

tude becomes
ý +i=

The real and imaginary parts of this equation are the evolution equations for

the symmetric wave. They are

11 = (1 -n. ), n. =( O/
(7.12)

j = - (l - n,, b nt = )/

The paramaters n and nb are the non-dimensional intrinsic upstream phase

velocities in the non-tilting states of the wave. These equations are equiva-

lent to the corresponding equations for the symmetric Helmholtz waves in (2.7).

They have the same form when the values of 9,1 are substituted from (7.11),

namely

d

(7.13) In A. = (i - r -- ) coto,

d- In A. = (nbb-I +&) tana.

They may be integrated in precisely the same manner, to find the evolution

from an arbitrary state of the wave. In particular, if the growth rate in

the states of stationary phase (&= O) is denoted by n we get

(7.l14) in tan a = l-n. = &.,

-n cot a = l-nb = &b,

precisely as in (3.1) for the Helmholtz waves. With the values of n. and nb
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substituted from (7.12) the growth rate n, with the proper dimensions kU

restored, becomes

(7.15) (nX/kU)2 = (nd/U) 2 = _ -(n-ft) 2 = " -(-i X) 2 .

It is zero for x = 3*e-, that is for the stationary b-wave K. in (7.9) and

for an infinitely long wave (x-0). Between these limits n in (7.15) is real,

and the waves are unstable. The mode of maximum growth rate (dn/df= 0) has

the wave number

(7.16) nm = l-exp(-2i2 ) = 0.8. (L =?7.9d)

It is about eight times longer than the depth of the shear layer. From (7.15)

its growth rate is

(71.7) nm = 0.o4 U/d = )i UkM. (L M=7.9d)

It is very nearly half the growth rate of the same wave if the depth of the

shear layer shrinks to zero and becomes a vortex sheet. The very long modes

(to the order of x) have the growth rate n= kU, the same as in a vortex sheet.

From (7.14) the stationary phase is given by

6 •- ( -U ) : 1- )K
tanas = ?= -- (1-=) or cos 2a, = (1-K)ei

The Kas-wave has a stationary b-state (a = 900). The growing (K= l)-mode is

450 downstream from the a-state. The mode of maximum growth rate (x,= 0.8)

has the phase of cos2am = /Tr. It is 31045e downstream from the a-state.

This wave is shown in fig. 7.

Waves which are very much longer than the depth of the shear layer

move very slowly downstream through the a-state and very fast upstream through

the b-state, so their stationary phase is near the a-state. To the order of

x the stationary phase of the very long waves is as=)in. The upper crest

is displaced the distance d downstream from the lower crest, and the growth

rate (to the same order) is kI. The resultant streamfunction at the upper

interface level, with higher powers of i ignored, is
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A 8 [cos x-o cos(x+x)V = /x A cos (x- 45).

The streamline crest is 450 downstream from the interface crest, the same as

in the growing mode of the vortex sheet. In the limit as d- O the value of the

streamfunction and the growth rate kU become exact for all wave lengths. The

shear layer behaves approximately as a vortex sheet for waves which are very

much longer than the depth of the layer.

Let us now consider the justification of the linear approximation

which has been used in the above theory. It is based on the assumption that

the wave amplitude is much smaller than the wave length (kAW l). In the

short stable waves the amplitude cannot grow beyond the b-state amplitude.

If kAsb 4l the linear approximation is good during the entire oscillation of

the short stable wave, and the linear theory is valid for these oscillations.

On the other hand, a long unstable wave should, according to the linear

theory, from any state except the decaying state of stationary phase (the

decaying mode) move toward the growing state of stationary phase (the growing

mode) where ultimately it grows at an exponential rate. After a certain til):-

the condition, kA 8l, is no longer satisfied, and the linear theory is no

longer valid. The subsequent non-linear evolution of the unstable waves is

a difficult mathematical problem, but its mair. characteristics may be anti-

cipated by qualitative physical reasoning.

Let us consider the wave of maximum growth rate shown in fig. 7. As

this wave leaves the a-state, the shear layer becomes periodically inflated

and deflated with the inflated parts centered downwind from the interface

crests. As the wave approaches the state of stationary phase, and the inter-

face keeps on growing at an exponential rate (according to the lineary theory),

the kinematics of the wave place an upper limit on the linear evolution,

namely the moment when the deflated parts shrink to zero in the middle. Let
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the wave of maximum growth rate be started from an a-state with an amplitude

which is one per cent of the wave length (A a= 0.01 L , or k Asa = 0.06). The

linear theory is then initially quite good. If the linear evolution is

extrapolated up to the kinematic limit, the wave will have reached very

nearly to the state of stationary phase at that time, so the kinematically

limiting interface amplitude Aam is given by the formula, Aam sina m= =d, and

we have

(7.18) Asmkm = Jam'sin am = 0.76. (nm = 0.8, a = 310451)

This value does not satisfy the condition A k4•l for the linear approximation.5

Near the kinematic limit the evolution of the wave is certainly no longer

linear. The non-linear terms which have been ignored are already becoming

increasingly important. To get a rough idea of the nature of this non-linear

evolution we shall nevertheless extrapolate the linear evolution up. to the

time of the kinematic limit and then use a different kind of reasoning for

the subsequent evolution.

Let us first determine the time which the wave needs to grow from the

initial a-state of A = 0.01 L to the kinematically limiting amplitudesa in

A mk m= 0.76, or As/Asa= 12. This time (see 3.3) is given by

ch nmt = 12 cos a m = 0.2 = ch 3, or nmt = 3.

From (7.17)

n m= 36 Uk m= w/Tm( = L m/U).

Thus, from an initial a-state with the amplitude one per cent of the wave

length, the wave of maximum growth rate reaches the kinematic limit in the

state of stationary phase in the time t = (3/n)T0 , that is, roughly the time

during which the outer fluid moves a wave length in the symmetric frame.

The subsequent non-linear evolution may be estimated as follows:
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The entire field of motion may be regarded as the resultant of all the partial

fields associated with the vorticity in the separated regions of rotating

fluid. Let us first consider one of these partial fields alone and estimate

how the fluid would move if all the other fields were absent. We represent

this partial field as the resultant of two component fields, namely, one

component field coming from the largest ellipse which can be inscribed in the

separated rotational region, and the other component coming from the remaining

vorticity within the two asymmetrically located arms which connect the ellipse

with the points of separation. It is clear that the major axis of the ellipse

is parallel to the interface tangents at the nodes, so from (7.18) its incli-

nation is given by

tan 0 = Asmkm = 0.76. (e-=37 015').

The minor axis is one half of the normal distance between these tangents,

that is

b = )dcos e+(om/km) sin 8 = )dcos 0(1+ 2amAsmk/mK) = o.82d,

or b = 0.82 d. The analytical determination of the major axis is not quite

so simple, but a careful graphical determination gives the value a= 2.2 d.

The elliptic vortex covers the area nab= 5.7d3. The entire separated

rotational region includes the fluid within one wave length of the shear

layer and hence covers the area L d= 7.9d2. The elliptic vortex has 72m

per cent and the connecting arms 28 per cent of the vorticity of the partial

field.

The field of an isolated elliptic vortex in an unbounded irrotational

surrounding fluid was derived by Kirchhoff*. The elliptic boundary has a

solid rotation in the sense of the vorticity inside with the angular speed

0= q ab/(a + b)'. (elliptic vortex)

Kirchhoff, Mechanics XX; Lamb, Hydrodynamics, 1932, p. 232.



-48-

The inscribed elliptic vortex in the separated region of the shear layer

would at the moment of separation rotate with the angular speed

S= 0.2 q -= 0.4U/d -= nm

if all the other vorticity were absent.

Let us for the moment ignore the component field coming from the

connecting arms, and consider how the partial fields from the other inflated

separated regions would move the elliptic vortex. Each of these have the

vortex strength x = 2 UL m, and their action in the region of the elliptic

vortex is roughly the same as that of vortex filaments of the same strength

placed at their respective centers. These filaments may be grouped symmetri-

cally in pairs whose singular point coincides with the center of the elliptic

vortex. Near this center all these partial fields are pure deformations whose

principal axes are inclined 450 toward the central level. This resultant

deformation field is stationary. At the moment of separation the major axis

of the elliptic vortex is inclined 370 toward the level. A short time later

it has turned into coincidence with the axis of inflow of the deformation

field. The deformation field has therefore at first very little direct

influence on the rotation of the ellipse. However, it deforms it into a

more circular shape, and thereby causes its rotation to speed up. The defor-

mation continues until the major axis of the ellipse is vertical and bisects

the angle between the stationary axes of deformation. At that moment the

ratio between the major and minor axis is a minimum and the ellipse has the

fastest rotation from its own field. The deformation now also contributes

to the rotation of the ellipse. This process can be examined more quanti-

tatively:

The two members of the Nth pair of vortex filaments have the distance

NLm from the center of the ellipse. The field of this pair has the stream-
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-function

S= (2UA/m) in (R1R.).

Using polar coordinates (R,9) from the center of the ellipse, we have

(RI %)a = R + (NL)' -2(BNL ) 2 coso2.

In the region of the ellipse we may ignore higher powers of (R/NLm)2, and write

R, 4 = (NL )2 - cos 2O.

Within this region the streamfunction has the ascendent

Z* = (4UR/km)[sin 29 (R7e) - cos 20 7R]/(NLm) 2 .

The vector in the brackets is a unit vector so the speed of the field at the

distance R from the center has the constant value

v = 2 mRn N(-DT) -2 (nm =Y2Uk )

This is the speed of deformation of the Nth pair. All the partial fields

have the same orientation, so the resultant deformation has the speed

v = 2 R•m (N)-2 = Rn/3 /

At the moment when the ellipse is oriented along the axes of deformation, its

axes are changed at the instantaneous rates

b/b = - a/a =n3,

and its rotation changes at the rate

2l a-b
fl a+bn 1 m

Substituting here, for a rough estimate, the values at the time of separa-

tion, namely

a= 2.2d, b = o.82 d, Qo=n,

* H. B. Dwight: Tables of Integrals and Other Mathematical Data, Formula

48.2. MacMillan Co., N.Y., 1957.
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the ellipse at that moment has the angular acceleration 0.3 n03 . Let usmW
assume, again for a rough estimate, that the acceleration has this constant

value while the ellipse turns from its inclined position at the moment of

separation (9=37015,) to the vertical position (0= 900), and evaluate the

corresponding time interval t. It is given by

0.15(n t) 2 + n t = (52.75/180)x = 0.92,

or t = O.82/nm = 0.26 Tm. If we ignore the acceleration and let the ellipse

rotate with the constant initial angular speed nm it would turn the same

angle in the time interval 0.29Tm.

It remains to consider the component field from the vorticity in the

two arms which connect the ellipse with the points of separation. We recall

that these include about 28 per cent, that is, each arm about 14 per cent of

the total vorticity in the separated inflated region. This component field

is roughly the same as that of a pair of vortex filaments of the same strength

placed at the centers of vorticity of the arms. At the moment of separation

these filaments have roughly the distance 2.4d=0.3L from the center of thea

ellipse, and their center line is inclined about 22W toward the center level.

In the region inside the ellipse the field of this pair is approximately a

pure deformation with axes 450 inclined toward the center line. At the

distance R from the center of the ellipse the speed of this deformation field

is

v = 0.14.2Rn (0.3X) 2 Rn /3.

This field has about the same strength in the region of the ellipse as the

resultant deformation from all the other separated vorticity concentrations.

The orientation of this field is such that it tends to slow down the rotation

of the ellipse. Furthermore, whereas the deformation field from the other
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vorticity concentrations is quasi-stationary, this latter field from the

connecting arms follows the ellipse in its rotation. The two deformation

fields effect the rotation of the ellipse in opposite sense, and since both

effects are rather small, every elliptic vortex rotates roughly as if all

the vorticity outside the ellipse were absent. It turns with the angular

velocity nm from the inclined position at the time of separation to the

vertical position during the time the outer air moves about one quarter of

a wave length. The ellipse is deformed toward a more rounded shape during

this transition. We note that these conclusions resemble the results from

Rosenhead's computations for the vortex sheet.

8. The statically stable shear layer. - We shall now examine a layer

with constant shear between unbounded irrotational outer layers of different

densities with the lighter fluid (p= p,) above and the heavier fluid (p= -a)

below the shear layer. The density distribution in the shear layer may be

assigned in different ways. In this section we consider the theoretically

simplest model where the shear layer is homogenous with a density which is

the arithmetic mean of the outer layer densities. In this model the

boundaries of the shear layer have the same static stability

(8.1) 36s=1(Ps- o,)/(P4 +P,).

This system with arbitrary densities in the outer layers was investigated by

G. I. Taylor* in 1916. The quasi-symmetric system (sC 1) was investigated

later by Goldstein**. The quasi-symmetric shear layer is governed by a

Richardson number which has the value

(8.2) 4 = i sgd/U .•

Taylor, G. I., 1931: Effect of Variation in Density on the Stability of

Superposed Streams of Fluids. Proc. Roy. Soc. A 132, pp. 499-523.

Goldstein, S., 1931: On the Stability of Superposed Streams of Fluids of
Different Densities. Proc. Roy. Soc. A 132, pp. 524-548.
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We shall examine the behavior of symmetric waves in this quasi-

symmetric shear layer. Similar to the statically neutral shear layer, the

deformations of the boundaries generate Laplacean fields associated with

the displaced vorticity in the shear layer. The interface level value of

the component field associated with the upper deformation z, is (U/x)zl.

However, the static stability across the interface now gives rise to sliding

vorticity along the deformed interface whose change is governed by the dynamic

condition in (2.4), namely,
D + ga

5rt-(u -u' f g"xL "

Let #1 denote the interface level value of the streamfunction of the Laplacean

field associated with this sliding vorticity. In terms of the streamfunction

the dynamic condition has the form

(8.3) DALI = (6a/)8

Let us find out under what conditions this sliding vorticity wave is stationaxy

and neutral in the symmetric frame. The individual change is then equal to

the convective change, so the dynamic condition becomes *1 = (Y• s/kU)zl . The

sliding vorticity wave is in phase with the interface deformation with maximum

value at the crest. The field strength is such that the sliding vorticity of

the interface filament is exactly reversed by the overweight while the fila-

ment moves from crest to trough in the symmetric frame. This is the wave

mechanism of the neutral gravity wave, so we shall call this part of the

symmetric wave a gravity wave. The second part, which comes from the dis-

placed vorticity of the shear layer, has the field strength (U/x)zl of the

Rayleigh wave. We shall call this part of the symmetric wave a shear wave.

The gravity wave is momentarily stationary and neutral in the symmetric

frame if it is in phase with the shear wave with an amplitude which is
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times the shear wave amplitude. This condition may be satisfied in an arbi-

trary tilting state of the symmetric wave. However, if the entire symmetric

wave shall be stationary and neutral, this condition must be obeyed by both

the gravity wave and the shear wave simultaneously, which means that the

symmetric wave must be non-tilting. When the shear wave is stationary in a

non-tilting state, the upper and lower fields will jointly move the inter-

face deformations intrinsically upstream with the speed U, so the kinematic

condition at the upper interface of the stationary wave is (see 7.12)

U aZ *a U. ) (a e)

The statically stable shear layer accordingly has two stationary neutral waves,

namely,

Stationary a-wave: n.(l+ a) = 1, ( = l /,
(8.4)

Stationary b-wave: ntb(l+ ) = 1. b =( )/x

The wave numbers of these stationary waves for any given Richardson number

are shown by the two lines in the stability diagram in fig. 8. Both lines

have the same asymptote, u,= x- 1. The a-line starts from the origin with

the tangent slope )i. Near the origin the stationary a-wave is very nearly

given by

S= Yx, or sg/kUa = 1. (n= kdC 1)

If the depth of the shear layer shrinks to zero this formula is exact and

gives the stationary neutral Helmholtz wave (2.2) which marks the transition

between the long stable and the short unstable waves in the statically stable

vortex sheet.

The b-line starts with unit slope from the stationary neutral Rayleigh

wave which marks the transition between the long unstable and the short

stable waves in the statically neutral shear layer. This makes it plausible
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that the shear layer has unstable waves in the spectral interval between the

two lines, as indicated in the figure.

9. The normal modes of the shear layer. - In an arbitrary state the

symmetric wave has the wave elements

z, = A cos (kx-a) = Real part (Ceikx),

(* = (U/a) A cos (kx-e) = Real part (Zeikx).

The complex wave parameters C and Z have the values

) = A e-i = -i ,(9.2) s

Z = (U/K) A e-io = X-iY.

The amplitude A of the gravity wave is weighted by the factor (U/x). This

makes A/As the amplitude ratio of the sliding vorticity to the shear vorti-

city, thus

A sliding vorticity amplitude
(9.3) r = shear vorticity amplitude

The change of the gravity wave is governed locally by the overweight of the

sloping interface filaments, so we may apply this condition in a local frame

which moves with the filament. The individual change is the local change in

this frame. In the units U=k= 1 the dynamic condition (8.3) for the

symmetric wave (9.1) is therefore 1= (wat)iC, which has the real and imaginary

parts

( = (= / ), or Acos e- e Asin e = i A sin a,(9.4)s

- Y = ("/')C, or i sin e+ 4 Acos e =-t &A cos 0.

Elimination of i gives the growth rate of the gravity wave, namely,

(9.5) A/A = (W/r) sin (a- 0).

The gravity wave grows when it is upstream from the shear wave with the

sliding vorticity maximum in the hill upwind from the interface crest.
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Elimination of A from (9.4) gives the intrinsic downwind phase velocity

of the gravity wave relative to the fluid at the interface, namely,

(W/r) cos (a- B).

Since the fluid moves downstream with unit speed in the symmetric frame, the

phase velocity in this frame is

(9.6) 6 = 1 - (W/r) cos (a- B).

If the wave has a state of stationary phase, B = 0, the growth rate n

and the amplitude ratio ro in this state, obtained from the ratio and the sum

of the squares of (9.5) and (9.6), are

n = tan (a -es)

(9.7)
ra = aa/(l +no).

The behavior of the shear wave in an arbitrary state is not quite so

simple because the boundaries of the shear layer are moved by all four

Laplacean fields. However, if the shear wave has the same phase as the gravity

wave (an 8), it behaves at that moment as a Rayleigh wave in a statically

neutral shear layer, only with the field intensities augmented by the factor

l+r. In particular, its phase velocity in a state of a= 0 (see 7.14) is

(9.8) & = 1- ( + r)(N cosaa+ nbsinaa). (a= 0)

In the non-tilting states both the gravity wave and the shear wave are instan-

taneously neutral, and they move through these states with the downwind phase

velocities

B, = l.-p/r, = n tan Ba, as l-a,(l+r,)- n tanas
(9.9) Bb = 1-W/rb =--n cot 0B, aI = 1-nb(l+rb) =-n cot as.

The first parts of these formulas apply to non-tilting states with arbitrary

amplitude ratios. If the amplitude ratios have the values characteristic of

a normal mode, the non-tilting phase speeds of the mode are related to the



growth rate and stationary'phase of the mode by the formulas in (3.1), which

have been repeated in (9.9). Both the gravity wave component and the shear

wave component are stationary and have the same growth rate in the state of

stationary phase of the mode (see 9.7), so the results derived in section 3

apply to both. In particular, the principle of constant energy transport of

the component waves in (3.5),

6&=~A A; .ýA: -aýaO

give the relation between amplitude ratio and phase velocities in an arbitrary

state of the mode, namely,

(9.10) '= (&..)r: = (/r.r,.

or

(9.11) 61A. = a16i -i*rb/r..

These formulas apply to both unstable modes (n >0) and stable modes (nW <0).

In both, the phase velocity ratio is inverted from one non-tilting state to the

other. This means that the stable mode has a tilting state where both compo-

nent waves move with equal speeds (= *a). This state of the stable mode is

the nearest equivalent to the state of stationary phase of the unstable mode

(zero speed of both waves). We shall denote it by the subscript m. The

amplitude ratio in the state of equal wave speeds (from 9.10) is the geometriL

mean of the ratios in the non-tilting states r= rarb. The phase of this state

is obtained from the phase equations (3.4) for the component waves, namely,

tan e = tan e.thnt, tan c = tan % thnt.

Their ratio gives

(9.12) tan e/tan a / . b/1b

The tangents of the phase angles of the component waves have the same ratio in

all states of the normal mode. The time derivatives of the phase equations in

a state of equal speeds have the ratio
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(9.13) cospem/cos% *;0*(6

The product of those equations gives

sin 20T sin 2a = 2sin (eT a)cos (0 *u%) = 0.(in*U)n m m m m

If le. I• $ I, this means that

Thu•, whether the component waves of a stable mode move in the same or in

opposite directions, the sum of the distances they have moved from a non-

tilting state to the state of equal speeds is equal to the distance between

the non-tilting states (a quarter of a wave length). Thus in the state of

equal speeds the ratio in (9.12) becomes

(9.14) tan-2 e = 1 = ,Ob/b = cotS6. (im ;M)

Finally, the value of the equal phase speeds is obtained from the phase equa-

tion (3.6), namely,

6m = 6. Cos 2m +÷ 4 in2gm = (+I- b)cosiO ÷b,

with the value of cos@m substituted from (9.13), which gives

(9.15) k -n2 . *ibQb-n

m +&. A ~* bm

These formulas define the state of equal speeds of the stable mode in terms

of its phase velocities in the non-tilting states.

The symmetric waves in the statically stable shear layer have an infinite

number of non-tilting states depending upon the value of the amplitude ratio

of the component waves, which may be assigned arbitrarily. To construct an

arbitrary non-tilting state as a resultant of normal modes, we need two pairs

of modes. The frequency equation for this system must therefore be a quadratic

equation in n2. We know already that the equation has two distinct roots,

n O, for the wave lengths of the stationary a-wave and the stationary b-wave
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in (8.4), so it must have the form
[n - I+ N (1+ ý)][n* -1+ nb (1÷) + Bno.

The value of B is found from the two limiting systems

U-.O: (na/ +rN)(n0/1k+n) = (n/v)(B/p) = 0,

s -0: en'-no(B-n.-nb+2)+(n.-l)(nb-l) = O.

The first of these gives the frequencies - n3= ma = W11,b of the two stable

modes in the resting three-layer system, and shows that B is independent of

u. One mode in the statically neutral shear layer (s= 0) is the Rayleigh

mode (see 7.14) with n' -- (n. -1)(nb -1). The second mode has therefore

n 2 =-l. It is stable with the frequence m=l and the amplitude ratio r=-l.

The shear vorticity at the deformed boundaries is everywhere neutralized by

an equal amount of sliding vorticity along the boundaries. The mode is a

neutral wave which moves downstream with the fluid. The coefficient of -no

in the frequency equation is the sum of the roots, so B has the value

B = nr + nb - 3- (D, - l)(nb - l) = - (n. -2)(nb -2).

With this value substituted, the frequency equation takes the final form

(9.16) [n*- l+n. (1 + p&)][n- 1 +nb(l+ U.)] =- n(n( -2)(nb- 2).

no= 0 on the a-line and the b-line in the K,x&-stability diagram (fig. 8) and

for no other wave lengths, so only on these lines can no change sign. The

sign is indeed changed for one of the no-roots when these lines are crossed,

for we have seen that the a-line near the origin marks the transition from

long stable to short unstable Helmholtz waves, and the b-line marks the

transition (for =O) from the long unstable to the sbort stable Rayleigh

waves. It follows that one family of modes is unstable in the spectral

interval between these lines and stable in the rest of the spectrum. The
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other family is stable. The growth rate of the unstable modes in units of

t/d is shown for selected values of the Richardson number in fig. 9.

With the growth rate (or frequency) of the mode known, its non-tilting

amplitude ratios are obtained from the products of the a- and b-equations in

(9.9), namely,

(l -u/r. ) ( -u/r) = no
(9.17)

The non-tilting amplitude ratios in turn determine the non-tilting phase

velocities of the mode. These finally determine the other characteristic

features of the mode. All the properties of the normal modes are therefore

known in principle from their growth rate (or frequency). An arbitrary

disturbance may be represented as the resultant of normal modes, so its evolu-

tion is known in principle as the resultant evolution of the modes.

To become familiar with the physical mechanism of this evolution we

shall examine it in a wave where the mathematical theory is very simple,

namely, the (nb =2)-wave.

10. The (nb= 2)-wave. - This wave is a little longer than the wave of

maximum growth rate in the statically neutral shear layer (7.16). It has the

wave number

(10.1) nb = 2: t = W(l+e-) = 0.74 (n, =2/K -2=0.7).

The value of n, is closer to 0.71, but the slightly smeller value in (10.1) is

accurate enough for a rough estimate.

The frequency equation (9.16) gives the growth rates for the two

(nu = 2)-modes, namely,

(i): n n = l- (l+0) =0.-
(10.2)

(ii): n2 = l-ni (l+U+) =-(1+22h).
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The first mode is unstable below the a-line, and stable for greater static

stability. The second is stable. Let us examine the evolution of these

modes from their non-tilting states:

(i) The unstable mode: The non-tilting amplitude ratios of this mode

are obtained from (9.17), namely

I -N,(1+o) =-[El-n,(1+r, )][l-2(l+rj,)] =- (1 -ý/r,)(1 -ý/r,).

These are satisfied by r,= IA, rb = 0. The phase velocities in the non-tilting

states are accordingly

r. Z ;: 0, O.= -,.(10.3)

rb =: o:6b =-, ;b =-l.

The gravity wave remains permanently stationary in the non-tilting a-state

and is absent from the b-state. The shear wave behaves formally like a

Helmholtz wave (see 2.8), but the working mechanism is different. The

Helmholtz wave moves upstream through the b-state with unit speed due to the

kinematic constraint at the interface nodes. The shear wave in (10.3) moves

upstream through the b-state with unit speed because it is here a simple

Rayleigh wave with the sliding vorticities momentarily absent. In the a-state

the mechanism is more similar: In the absence of static stability the Helmholtz

wave moves downstream through the a-state with unit speed due to the sliding

vorticity convergence at the downstream nodes. The statically neutral shear

wave moves downstream with the speed 0.3, resulting in inflation of the shear

layer at the downstream nodes. The static stability (and the sliding vorti-

city it excites) counteracts the downstream propagation of both waves, and

becomes the dominating factor when sufficiently strong. The entire evolution

of the shear wave in (10.3) may be represented graphically by a diagram very

like the Helmholtz diagram in fig. 2, with straight &.- and &b-lines.

The shear wave has a etaLionary a-state for L= nl -l= 0.4, where the

(nb = 2)-line meets the a-line (see fig. 10). For weaker static stability



If

I

06

04T I

ui 

0

2 K-

1* " /4 34

-------- D'.k- - + daze

1-A~wv 4
I I u (

Flg.lIO The unstable (nbu2)-mode



S! -61-

the shear vorticity dominates, and the shear wave moves downstream through the

a-state. As it leaves the a-state it begins to grow but slower than the

statically neutral Rayleigh wave, because the sliding vorticity field (which

remains behind in a growing a-state) retards the growth. As the static sta-

bility is increased from zero, it acts in two ways to reduce the growth of the

shear-wave: Wi) It reduces the downstream speed through the a-state and there-

fore gives the shear wave a stationary phase closer to the a-state which is

less favorable for efficient growth. (ii) It retards the growth directly

because the crest of the shear wave is downstream from the sliding vorticity

maximum (see fig. 10).

ForM >0.4 the sliding vorticities are strong enough to move the shear

wave upstream through the a-state. It is a stable wave which moves progres-

sively upstream, while the gravity wave performs standing oscillations in the

a-state. The shear vorticity and the sliding vorticity act on the changes of

the interface amplitude in opposite sense in these waves. If u= 1. 8 5 the two

actions are equal, and the shear wave is a neutral wave which moves upstream

with constant unit speed and constant amplitude. For weaker static stabilities

(in the interval 0. 4 << 1<.8 5) the shear vorticity dominates, so the shear :ave

decays and speeds up from the a-state to the b-state, and it slows down again

and grows as the wave moves on to the next a-state. For greater static stability

the sliding vorticities from the overweight dominates, and the shear wave

changes speed and amplitude in opposite rhythm.

(ii) The stable mode: The amplitude ratios in the non-tilting states

of this mode are given by the equations

1 +2u = [1l-r(l+r,))[1-2(l+rb)] = (-/Wra)(l-W/rb),

which give r, = -1, rb = -(1 +M). The mode is stable and moves progressively

downstream, passing the noi,-tilting states with the extreme phase velocities



-62-

-r, l 'i' = ILa i

(lO.4)
-rb = to + ?- ,L,)/(l+ $A), +

In the statically neutral shear layer this wave has the constant amplitude

ratio r= -1. The sliding vorticities cancel the shear vorticities so both

fields drift downstream with the fluid. In statically stable shear layers

the mode has the same general behavior for all values of iL: The resultant

field is zero in the a-state, so the shear wave drifts downstream with the

fluid through the a-state, while the gravity wave moves downstream faster

than the fluid, driven by the overweight at the downstream nodes. After having

left the a-state the sliding vorticity maximum is downstream from the interface

crest where it is augmented by the overweight, so the gravity wave grows and

slows down. The shear-vorticity tends to augment the interface amplitude, but

this tendency is more than compensated by the stronger opposite action of the

sliding vorticity. The shear wave decays and speeds up after leaving the

a-state.

As the gravity wave slows down and the shear wave speeds up they

approach the state of equal speed with the gravity wave at the maximum dis-

tance downstream from the shear wave. The amplitude ratio has here the value

rm = r, rb =47-. The phase of the component waves is given by

tan3Bm = cot 2am = k = l+*, or cos2am=-cos29m= u/(2+a),

and the equal speed of the waves is (2+3,L)/(2+ik). The (u=2)-mode has a

very simple state of equal speeds (9m= 60°, im=2, rm= /').

After the state of equal speeds is passed the shear wave has the faster

speed. Both waves arrive together in the b-state, the shear wave with the

maximum speed 1 + 2 p, the gravity wave with the minimum speed (1 +2p)/(l +P).

The evolution from an arbitrary state of the (n, = 2)-wave may now be

found as the resultant evolution of the normal modes. For example the evolu-
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tion from an initial a-state with the interface amplitude As= Asa and no

sliding vorticity along the interface (Aa= 0) may be represented as the

resultant of the a-state of the unstable mode with the amplitude A 1 = As/(1 +P)

and the a-state of the stable mode with the amplitude As = Asau/(l + I±). The

shear wave component of this resultant wave moves downstream through the

a-state as a simple Rayleigh wave with the speed 1 -na = 0.3. The momentarily

absent gravity wave is immediately excited with the negative vorticity maximum

at the downstream nodes. In terms of the evolution of the modes the appear-

ance of this sliding vorticity may be interpreted as the downstream displace-

ment of the negative vorticity of the stable mode, while the positive vorticity

of the unstable mode remains behind in the a-state.

11. The modes on the a- and b-lines. - All the mathematical formulas

for the symmetric waves in the shear layer are symmetric in the subscripts a

and b, so the formulas for the modes on the a- and b-lines are the same with

the subscripts interchanged.

On the a-line the roots of the frequency equation (9.16) are

(i) na = 0, r. =
(11.1) n.(l+ U i+

(ii) n 2 = 1- nb Ul+p) - (n. - 2) (n -2).

The roots on the b-line are obtained by interchanging a and b. Consider first

the n = 0)-mode.

Ui) The (na= 0)-mode: On the a-line this mode has a stationary neutral

a-state with the amplitude ratio rz = u. If started from the b-state, the mode

moves toward the stationary a-state and approaches this state with =n asymptotic

lineaL growth rate. The amplitude ratio for the b-state of this mode cannot be

obtained from (9.17), which here gives n2 = = = 0. However, it will be

shown in the next section (see 13.4) that the non-tilting phase velocities of
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the gravity wave in a normal mode are

(11.2) ;. n. -l+n.(l+a); ;1 . no-l+nb(l+I)

n,, -2 nb -2

These values satisfy the upper equation in (9.17), and they reduce to the

values for the (nb = 2)-modes in section 10. With these values substituted,

the equations (9.9) give the non-tilting amplitude ratios of the mode, namely,

(11.3) 2= -_n_= 2-nb
, l+Mn, +n a 1+unin+

The b-state amplitude ratio of the (nO= 0)-mode on the a-line is

(11.4) rb _ .2-L= l~nb(l+•)-l _ -_ (a-line)

U . l+ ktflb1+unfb t an

Since ra = 4, this formula gives the b-state phase velocity ratio as well

(see 9.11,12). The b-state amplitude ratio is zero in the (nb = 2)-mode. It

is positive in the shorter modes, increasing to the asymptotic limit rb = U in

the very short modes. It is negative in the longer modes, decreasing to the

asymptotic limit rb = -)k in the very long modes (•nb -1)).

From (11.2) and (11.4) the b-state phase velocities in this mode are

- = nb (l+1)0 -l l+= +b _1 = L. I

(11.5) 2 -n% 2 -nb ri (a-line)

.- 6b =nb U.+ p) - 1+ = nb (l+rb)-l.on,, +I I•nb +i1

On the a-line nb(l+ p)>l, or lknb +l> 2 -nb, so the shear wave moves upstream

in all the (na= 0)-modes on this line. It moves with unit speed in the

(nb =2)-mode where the sliding vorticity is absent from the b-state. In the

longer modes its upstream speed is greater than unity, but less than the

speed of the Rayleigh wave because it is retarded by the negative sliding

vorticity. The gravity wave on the other hand moves downstream in the long

modes, faster than the fluid, driven by the overweight at the downstream nodes.

After leaving the a-state the gravity wave grows from the overweight at its



create and slows down. Also the shear wave grows, but slower than the Rayleigh

wave because the growth is retarded by the sliding vorticity. Both waves move

on in opposite directions toward asymptotic approach to the stationary a-state

which they never quite reach. The gravity wave retains a residual phase

upstream and the shear wave a residual phase downstream from the a-state.

Since the energy transport is constant, their growth continues indefinitely

at a linear rate (A=Ab;b and As=-ASh~b).

In the shorter (nb <2)-modes both component waves move upstream through

the b-state. The speed of the shear wave is less than unity, but greater than

the speed of the Rayleigh wave due to the positive sliding vorticity. The

gravity wave is driven upstream by the overweight at the upstream nodes. In

modes near the (nb= 2)-mode this component is very weak and moves very fast.

In the shorter modes with greater static stability it is stronger and has a

slower speed. In the (nb= 1)-mode for example (see 7.9) the gravity wave has

the b-state velocity -4 =11:1 -1=0.77. Since rb<1& in the short modes

(see 11.4), the gravity wave is leading and the shear wave trailing all the

way from the b-state to the asymptotic a-state. The gravity wave grows from

the overweight at its crest. The shear wave grows at a slower rate than the

Rayleigh wave because its growth is retarded by the sliding vorticity. In

the asymptotic a-state the mode has the residual downstream phase ratio

alG= ./rb >1. The waves have here the same relative position as in the longer

modes, and the asymptotic linear growth A = -Abib, As = -Asb;l.

On the b-line the (n*= 0)-mode has a stationary neutral b-state with

the amplitude ratio rb = 9. From (11.4) its a-state amplitude ratio is

(11.6) L • i 4 i,'(i+j) 0 t•fl (b-line)
S l+ l+• W' tans

Here n,(l+10)<l, or 2-n, >l+tun,, so r,>p in this mode. From (11.5) its
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a-state phase velocities are

6, = -_.(1~l) = 1 -1+0z =

22-r
(11.?) (b-line)

l-, .l=u)= i...l= l-;,(z~r,)>o.

Both components move downstream through the a-state with the shear wave

leading and the gravity wave trailing. The shear wave moves slower than the

fluid, but faster than the Rayleigh wave due to the positive sliding vorticity.

The gravity wave moves intrinsically upwind with a speed less than unity

(r. >p) driven by the overweight at the upstream nodes. As it trails behind

the shear wave, it grows from the overweight at its crests, while the growth

of the shear wave is retarded by the sliding vorticity. In the asymptotic

b-state the mode has the residual upstream phase ratio (*0-O)/0u-a)= r/,. >i,

and the growth continues at a linear rate (i = Ak k, is= Asa5 )"

If the wave length is much shorter than the depth of the shear layer,

the fields from the lower boundary have no appreciable effect at the upper

boundary and vice versa. In the short modes on the asymptotic (a,b)-line the

shear wave and the gravity wave are both stationary and neutral in an arbitrary

tilting state and have the amplitude ratio 4.

The (nW = 0)-mode on the a- and b-lines has a state of equal speed

(9+a=)•w) downstream from the a-state. The phase and speed of this state

are given by (9.14) and (9.15).

The stable mode: On the a-line this mode is defined by the second

na-root in (11.1). With this value substituted (11.2) gives the b-state

phase velocity of the gravity wave in this mode, namely,

kb = 2-r = l- m'rb, so u/rb = N.-i =- /(l+&).

Its b-state amplitude ratio and phase velocities are therefore

(11.8) -rb = 1+1, ;b = (U+2i)/(i+ 4), ab = l+ Lnb. (a-line)
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I The amplitude ratio is the same as in the stable (nb = 2)-mode (see 10.4).

The two modes have a rather similar behavior. In both the component waves

move downstream through the b-state faster than the fluid. In the present

mode the phase velocity difference is

(11.9) ;b - b 0= 1[nb ( + Y)U- ( + ) >0. (a-line)

Also here the shear wave is leading the gravity wave downstream from the

b-state. It slows down and grows from the b-state to the a-state, speeds up

and decays from the a-state to the b-state and so on, while the gravity wave

changes speed and amplitude in opposite rhythm.

The a-state amplitude ratio and phase velocities are obtained from

the formula (9.11), namely,

(11.10) ry, = 1 + Cl-.- + tan__.> O, (a-line)

r. ib l+ + & tana

which gives

_r. = , +2P 1 -wr.. .= , r. (a-line)l+n2• .+

1 + flbk&0+

The a-state amplitude ratio has the asymptotic lower limit - r, =)Y in the very

long modes (nbu- 1), increasing to one in the (nb = 2)-mode and on to the

asymptotic upper limit g& in the very short modes.

The behavior of the stable mode on the b-line is obtained from equa-

tions (11.8-11) by interchanging the subscripts. Also here the amplitude

ratio is negative with - r, = 1 + j and - rb increasing from unity in the stati-

cally neutral shear layer to the asymptotic upper limit 4 in the very short

modes. The gravity wave therefore moves progressively downstream faster

than the fluid, leading the shear wave from the a-atate to the b-state:

S.a -+a P )[l-n (1+ / )(l+ 0)>0. (b-line)

It grows and slows down from the a-state to the b-state, speeds up and decays

during the next quarter period and so on, while the shear wave changes speed
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and amplitude in opposite rhythm, precisely as in the stable mode on the

a-line. The behavior of the gravity wave is clearly understood in terms

of the overweight at its crests and nodes. The shear wave responds to the

joint action of shear- and sliding vorticities, with the sliding vorticity

dominating in all states of this mode.

The stable mode has the same general characteristics on the (nb = 2)-

line and on the a- and b-lines: It has a negative amplitude ratio with

minimum absolute value in the a-state and maximum value (- rb ý 1+ 1) in the

b-state. Its component waves move progressively downstream. They move

faster than the fluid in all modes except the shear wave near the a-state in

the long (nb >2)-modes. The gravity wave is the leading component from the

a-state to the b-state. It is the dominating component in all states of the

stable mode. Its sliding vorticity governs both the propagation and the

growth and decay of the shear wave, so it moves intrinsically downstream

through the fluid with pulsations opposite to the action from its own field.

It is plausible that the stable mode has the same behavior in all parts of

the spectrum.

12. The unstable mode in the shear layer. - We have seen that the

statically stable shear layer has an unstable mode in the spectral interval

between the a- and b-lines in the K,t-diagram. Near the a-line this mode

has an asymptotic linearly growing state with the shear wave a residual

phase downstream from the a-state. Near the b-line the unstable mode has

an asymptotic linearly growing state with the shear wave a residual phase

upstream from the b-state. At intermediate points the unstable mode has

an exponentially growing state of stationary phase with the phase of the

shear wave downstream from the a-state increasing continuously from zero on
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the a-line to 90o on the b-line. The gravity wave has the proper phase

upstream from the shear wave to make it grow at the rate of the mode (see 907).

The unstable mode has a rather simple kinematic structure on the

straight line which is the common asymptote of the a- and b-lines, namely,

(12.1) i+• a= K: n,(l+ 1) = l- ; nb(l+o) = 1+a.

On this line the non-tilting phase velocities of the gravity wave in the

normal modes (11.2) are

6, = (t-n')/(2-n ) - ntan 0.,
(12.2)

"6b = (a +n0)/(2-nb) = ncotOs.

Its stationary phase in the unstable mode is given by

(12.3) tan2 95 = (v-n 2)(2-nb) = [n2 +2t_-l]- _?+n 2 (2K-l))

(o+n 2 )(2-n ) E[n2+2x -l]+ [a?+n m(2K-l))]

where n2 is the positive root of the frequency equation

(12.4) n4 _-C+n 2 (2-_n)(2-nb) = 0.

In shear layers with very weak static stability (p Cl )this wave has very

nearly the wave number t= 1, and its frequency equation is

p&cl: n'- +n2 (1 - a) = (n 3+l)(nW-_) = 0. (K=l)

The unstable mode has here the growth rate n=t= e-1 , and from (9.7) the ampli-

tude ratio re=a(l+a?)iCl. The very weak gravity wave has, from (12.2), the

stationary phase tanOs= (1 -o)/(l + ), or tan(450°-s)= v=n. From (9.7) the

stationary phase of the shear wave is therefore as= 450. The very weak gravity

wave is 15.20 upstream from the shear wave, but gives no significant contribu-

tion to its growth. The growth of the shear wave is caused by the shear field,

centered at the opposite interface,which acts with its full strength o in this

mode.

In shear layers with very strong static stability ( i)the mode on

the a,b-asymptote is very much shorter than the depth of the shear layer
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( >l), so the component fields are reduced to insignificant strength at the

level of the opposite interface. The wave at each interface behaves as if the

wave at the other interface were absent. The frequency equation (12.4) for

these very short modes is

0 ýIl: n4 +4n 3 = nOCnW+4) = o. (K l)

One mode is a stable neutral wave with the amplitude ratio r = Ik which moves

intrinsically upstream through the fluid with unit speed, so it is stationary

in the symmetric frame. The second mode is a stable neutral wave with the

amplitude ratio r =- - which moves intrinsically downstream through the fluid

with unit speed, so it moves downstream with the speed and frequency m = 2 in

the symmetric frame.

For shear layers with dominating static stability (p> 1) a good approxi-

mation for the positive root is obtained by writing the frequency equation

(12.4) in the form
11C? Ka

(2- n. )(2-nb) +n2  [e4(2t- 1) 1 + (n=ex)2 -

For t22, the term eK(2K-l)>21, so practically no error is made if the last

term in the denominator (-1) is ignored. The approximation is even better

when also the middle term is ignored, giving the growth rate

(12.5) &ki: n K Ke-X/(2t- 1). (Kk2)

Even in the shear layer with static stability and shear of equal strength

((k=l) this formula gives the growth rate of the unstable mode on the a,b-

asymptote with an accuracy better than one per cent. From (12.3) the station-

ary phase of the gravity wave in this mode, to the same accuracy, is given by

(12.6) Ukl: cos2Bs = + (2X -l) ("2)

For strong static stabilities (4 '21) the growth rate is n =), the gravity

wave has the stationary phase es = (u-)ia), and from (9.7) the shear wave has
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the stationary phase a= 4(N+ 3r). The amplitude ratio of the mode is rs=g•.

With this stationary phase the shear wave would grow from its own field, if

acting alone, at the rate a. The sliding vorticity of the very strong gravity

wave with its maximum )1upstream from the interface crest reduces this growth

rate by fifty per cent.

In conclusion we shall as a typical example exhibit the unstable (x= 2)-

mode in the shear layer with static stability and shear of equal strength

(,i = 1). It is shown in fig. 12. From (12.5) its growth rate is

4=i, X=2: n = 2/(3e2 ) = O.09Uk= 0.18U/d.

From (12.6) and (9.7) its component waves have the stationary phase

cos2Os =7/(9e2 ) = 0.104, 8s = 42°, as = 47.20,

and the amplitude ratio r,= 0.996. If the temperature difference of the

outer layers is 5 Kelvin and their relative translation 2U= lOs-1 , the

shear layer between them must have the depth d = 600 m to make it a (ý= 1)-

layer (see 8.2). The (n= 2)-mode in this layer has the wave length 1880m.

In the asymptotic state of stationary phase its amplitude doubles every

7.7 minutes for as long as the linear theory is a valid approximation.

13. Shear layer between bounded outer layers. - To satisfy the kine-

matic conditions of zero vertical motion at the rigid boundaries of the outer

layers (as in 4.1), the streamfunction of the field associated with the

periodic vorticity field (u+ -u-) at the upper boundary of the shear layer

has above and below that interface the values

*+ = 1 shk(h - z)/sh kh, (z > 0)

#-= 1shk(h + d + z)/sh k(h + d). (z<O)

Here h denotes the depth of the outer layers and d, as before, the depth of

the shear layer. The tangential components of the field at the interface are
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U' kkcth kh,

-u"= *k cth k(h + d).

The corresponding vorticity field at the interface is therefore

u +-u = (2i/d)#1 .

Here we have introduced the non-dimensional parameter

(13.1) it = Yakd[cth kh + cthk(h + d)].

At the lower boundary of the shear layer the field is reduced to the value

ol, where

(13.2) a = sh kh/sh k(h + d).

For waves which are much shorter than the depth of the outer layers these

parameters reduce to the earlier unbounded layer values, namely,

kh ýl-: x = kd, a = e

From the dynamic condition in (7.2) the shear vorticity field associated

with the deformation z1 of the upper interface is

u - u = (2U/d)z 1 = (2x/d)*I,

so the streamfunction of this field has the interface level value (U/i)zt1 ,

as in (7.3) for the unbounded system. The sliding vorticity field along the

interface changes in accordance with the dynamic condition in (8.3), namely,

Dt(u -u-) = (2x/d); =--sz
t Dt 1 ax'

so the streamfunction of this field has the change

-D= (W/z)..,i (k% = sgd/U)

Let us apply these conditions to an arbitrary state (9.1) of a symme-

tric wave. If the boundary conditions are satisfied at the upper interface

for the symmetric wave, they are automatically satisfied at the lower inter-

face, so it is sufficient to consider the upper conditions. The non-dimen-

sional dynamic condition at the upper interface, namely,
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at arux) Ox

with the wave elements substituted from (9.1), becomes

Z- ii = (w/x)C. (Dynamic condition)

The kinematic condition at the upper interface, as in (7.12), is

- + #I+8 rA +C( 8 O 1
at Orx) ax

For the symmetric wave in (9.1) this condition becomes

4 = Z+ rs/t- (Z*+ C/*A). (Kinematic condition)

Substitute here the value of the shear wave parameter C from the dynamic con-

dition. The resulting equation

i - Z + (1 + 0)(Z - az')/x = -2i + i( d + a,!)/x

has the real and imaginary parts
X - [1 -N(1 +u) ]X = (N.- 2)i', n. = U - o,)/,n

('3.3)
(1 )i-l- n (1 + u)]Y = -(nb - 2)X. nb = (l +

They are the evolution equations for the gravity wave component of the

symmetric wave.

In a state of stationary phase (9= O,= const) only the amplitude of

the wave changes with time, so the evolution equations (13.3) for such a

state are

A -I-n.U+P)]A = (in. -2)Atans$,

-1 - n (1 + p) ]A = - (nb - 2)ACot Bs.

These are different forms of the same equation. It has solutions of the

form A-ent where the growth rate n is a root of the simultaneous quadratic

equations

n'-l+n.(l+) = ( 2 -2)ntanes = j,(n, -2),
:• (13.4)

(n'-l+ nb(l+j) =-(nb-2)ncot 9s = &b(n,-2).

Elimination of 0s gives the bi-quadratic growth-rate equation in (9.16),
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which accordingly haa the same form for bounded and for unbounded outer

layers. The wave has a state of stationary phase S9 with a real growth

rate n in the spectral interval where the growth rate equation has a posi-

tive root ni2 >0. The sum of the roots is never positive, so the growth

rate equation has a positive root if the constant term is negative, that is

in the spectral interval where

(13.5) En. (1+ u) - l)[nb(I + 1) - 1<C0. (Instability)

This condition is satisfied in the spectral interval between the stationary

neutral a-wave and the stationary neutral b-wave (8.4). In this interval the

shear layer has one pair of unstable modes, one growing and one decaying at

the rate n, where n is the real positive root of the growth rate equation.

As in section 9 we shall regard this pair as the two states of stationary

phase of a single mode.

14. The instability criterion for the bounded shear layer. - The

condition for instability in (13.5) may be written

(14.1) K/(l- a) > 1+ P>K/(l + a), (Instability)

where x and a are the non-dimensional depth parameters in (13.1,2), namely,

x = )ikd[cth kh + cthk(h +d)J,
(14.2)

ot= shkh/sh k(h + d).

For unbounded outer layers x= kd, a= e-K, and the condition gives instability

in the spectral interval between the a- and b-lines in Goldstein's stability

diagram in fig. 8. For bounded outer layers, choosing for the moment the

length unit )id=l, we have

ft shk(h+2)ch kh+shkhchk(h+2)

k(l * a) sh khsh k(h + 2) * sh kh]

so the lower limit in (14.1) is



X h 2k(h + l) chk(h +1)
k(l+a) 2shkhsh k(h +)chk shkhchk

and the upper limit is

K sh 2k(h + 1) shk(h +i)
k(l -a) 2 sh kh ch k(h + l)ahk sh kh sh k

Substitution of these in (14.1) with arbitrary length units restored gives

instability of the bounded shear layer in the interval

(14-.3) cthkh +cth A kd >22(1 + )/kd >cth kh +th)i kd. (Instability)

The upper limit is a stationary neutral a-wave and the lower limit is a

stationary neutral b-wave.

If the depth of the shear layer shrinks to zero, no wave satisfies

the lower b-wave limit. The vortex sheet has no stationary b-wave whether

the layers it separates are bounded or not. However, as kd -. 0, the a-wave

limit, using (8.2), may be written

cth kh - sg/kTU = (i kd)-i, c th )i kd -.- kd/6 -. O,

so, as shown earlier in section 4, the vortex sheet between layers of finite

depth is unstable for waves shorter than

(14.4) ph = (sg/kAU)thkh<i.

Here Ph is the Richardson number of the Helmholtz wave in (4.5).

In the statically neutral (;b= 0)-shear layer no wave satisfies the

upper a-wave limit in (14.3). The condition for a stationary b-wave is here

Stationary b-wave: cthkh = O1kd)-1 - th)ikd. (h =O)

The longer modes are unstable and the shorter stable. This condition is

represented graphically in a (kd, kh)-diagram by a line which leaves the

origin with the slope h= A d and has ýhe vertical asymptote kd= x. of the

stationary b-wave in the shear layer between unbounded outer layers (see 7.9).

If the statically neutral shear layer fills more than one half the space

between the outer rigid boundaries (d>2h) it has no stationary b-wave and

no unstable modes.
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Waves which are very much longer than the total depth between the

rigid boundaries, k(d+ 2h)C-l, obey the quasi-static approximation with

good accuracy (see section 5). The instability condition (14.3) for the

long quasi-static waves in the bounded shear layer may be written in the

form

(14.5) 1 > sgh/UA = ph > 1 - 2h/d. k(d + 2h) 41

It is determined by the Richardson number for the quasi-static Helmholtz

waves (5.6) and the ratio between the depths of the shear layer and the

outer layers. If h >1 the shear layer has no unstable quasi-static waves.

The (%h= 1)-shear layer has cne quasi-static mode with a stationary neutral

a-state and an asymptotic linearly growing a-state. The other mode is stable.

If the shear layer occupies more than one half of the space between the outer

boundaries (d>2h) and its static stability has the value uh=l-2h/d, it

has one quasi-static mode with a stationary neutral and a linearly growing

b-state. Finally shear layers which occupy less than one half of the space

between the outer boundaries have quasi-static instability if Lh <1.

15. The statically stable Th-shear layer. - We shall now examine a

quasi-symmetric shear layer which has continuous variations of velocity and

density toward asymptotic values far above and below the central level,

namely,.

(15.1) U = Uoth(2z/d), p = poexp[-s th 3 (2z/d)].

We shall call this a Th-shear layer. It resembles the discontinuous Taylor-

Goldstein constant-shear layer in section 8, and we shall show that it

exhibits similar dynamic characteristics. Far from the central level the

fluid moves in opposite directions with the same constant speed. The fluid

at thc central level has the maximum vorticity 2Uo/d, so d is the depth of
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the "equivalent" constant-shear layer. The Th-velooity profile in (15.1)

is very close to the error-profile which develops by vorticity diffusion

from a statically neutral vortex sheet (see fig. 6).

The Th-shear layer in (15.1) has no static stability at the central

level. The variation of the density from far below to far above the central

level is a small fraction of the density at the central level, so the layer

is quasi-symmetric. Let the subscripts 1 and 2 denote the asymptotic limiting

densities above and below the central level. They have the values

PI = Coe -s , Po(U - s). (s•l)
Ps = 0oe = "oUl+ a),

so the stability parameter s has the same meaning as in the constant shear

layer (see 8.1), namely,

(15.2) s = (o, = P, Won + )

In the following we shall use units of length and time such that

id = Uo = 1, and introduce the abbreviated notations

T = th(2z/d) = thz,
(d=2)

S = sech(2z/d) = sech z.

These are connected by the relations

T' = Sa = 1 Ta, T" = 2S8' =-2TT' =-2TS2 .

Here and in the following the accent denotes differentiation with reference

to height.

The static stability of the density stratification in (15.1) is

represented by the logarithmic density gradient, namely,

(15.3) a = - (in o)' = (lnw)' = 3sT2S3 .

We note that the stratified Th-shear layer in (15.1) has maximum

static stability and maximum vorticity gradient at the levels

a' = 0: T' U )J, (z=0.44d)

U"', = 0: Ta = • (z= 0.33d)
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Both lie inside the boundaries of the equivalent constant-shear layer (z =d).

We must expect some difference between the dynamic behavior of the Th-shear

layer and the constant-shear layer on this account.

16. The wave equations for the Th-shear layer. - We now introduce into

the Th-shear layer an arbitrary two-dimensional small amplitude wave disturb-

ance in the planes of the basic flow whose velocity field v(x,z) is repre-

sented by a streamfunction as in (1.2). The resultant motion V=Ui+v

satisfies the dynamic equation

DVS= ¢a*&- ~

where or and p denote the undisturbed static fields when the wave is absent,

and the barred symbols denote the local variations of these fields due to the

wave. We linearize this equation, substitute for the static pressure gradient

from the static equation, ZY = A, and eliminate the dynamic pressure p by

vectorial differentiation. The result is

0 = 7X PC(DY) t + /dr) ft7X (DY,/Dt +/Cr).

The approximation indicated in the last member on the right is the quasi-

symmetry approximation which ignores the kinematic effect of the density

gradient. (See section 4 and also the theory of the isothermal atmosphere

in Chapter II, section 7.)

For the two-dimensional incompressible flow the inertial term in

the vorticity equation may be transformed as follows

DV DV DQ
7X _==7X(= V=-0 (7X V=U11j+7X v)~ VDt Dt -- FD ~ Uw

The fluid is incompressible so the local change of the specific volume

comes from the vertical displacement zs of the fluid particles from their
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undisturbed levels. Its value to the linear approximation, using the nota-

tion in (15.3), in therefore

ia/- -(in CV) ' - - B

With these substituted, the quasi-symmetric vorticity equation above takes

the form

(16.1) 7x =X!V (U' +q) = c-,
Dt Dt a

where

(16.2) q .Xv 0- q8= q g+

is the vorticity field of the wave. The vorticity equation (16.1) is the

dynamic equivalent of the corresponding condition at a statically stable

interface between fluid layers of different densities (see 2.4), and it

represents the same physical principle: The vorticity of the fluid particle

is changed in the sense of its overweight which is proportional to the static

stability and the slope of the isosteres. The vorticity is the sum of the

shear vorticity of the basic flow U' and the vorticity which is added by

the wave motion. As in the constant shear layer the added periodic vorti-

city field q in the wave may be regarded as the sum of two component fields

as indicated in (16.2). One component q. comes from the vertical displace-

ment of the shear vorticity U' of the basic flow. We call this component

the shear wave. The second component qg is the part of the vorticity which

is changed by the overweight and will be called the gravity wave. In a

statically neutral shear layer (a= 0) the gravity wave is absent, and the

dynamic equation (16.1) gives the shear vorticity change

(16.3) Dqs DUt Dzt

or, when integrated, the shear vorticity itself

(16.4) qs = U"17s"
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It is positive (in the sense of the basic shear) for displacements away

from the central level, and negative for displacements toward that level.

Evidently the same relation (16.4) holds for the shear vorticity in the

statically stable shear layer so, with (16.3) substituted, the dynamic

vorticity equation (16.1) gives the change of the vorticity field in the

gravity wave, namely,

(16.5) D (q'- q) = z ="

Let us now assume that the shear wave and the gravity wave are in phase

(or in opposite phase) at all levels, with the amplitude ratio

(16.6) r(z) = qg/qs. (Equal phase)

However, the wave may have an arbitrary tilt. In such a state of the wave

the extreme values of the vorticity coincide at all levels with the crests

and troughs of the shear wave, so the gravity wave is momentarily neutral

in a state of equal phase. Let G(z) denote the intrinsic upstream speed of

the gravity wave through the fluid in a state of equal phase. In a frame

which moves locally with the gravity wave the fluid moves downstream with

the speed G and the gravity wave has at the moment no local change, so

(16.5) for a state of equal phase becomes

ax= 8-x U", Ox-

which gives the intrinsic upstream phase velocity

(16.7) r = " 5p//' P o P

In the last term on the right we have substituted from (15.1-3)

._.25-.-. , = l.5sg = 1.5,ULV 2 TrTF

so the Richardson number 4 has the same meaning an in the constant shear

layer (see 8.2). The phase velocity formula for the gravity wave in (16.7)



resembles the corresponding formula (9.6) for the constant shear layer

which, for a state of equal phase, gives the intrinsic upstream speed p/r.

However, the gravity wave in the Th-shear layer has 50 per cent more vorti-

city than a wave with the same relative speed in the constant-shear layer.

-The reason for this is at least partly that U <CU at all levels in the

Th-shear layer, so the gravity wave needs less overweight to have the same

relative speed.

To derive a corresponding phase velocity formula for the shear wave

we must specialize further to a non-tilting state of equal phase where also

the shear wave is instantaneously neutral. Let C(z) denote the upwind

intrinsic speed of the shear wave in a non-tilting state. The kinematic

condition for such a state may be written

Dzs Izs

Dt ax Ox'

which gives the intrinsic upwind phase velocity

(16.8) E= -- "L=

U Uz5  U qs Uq q

This formula resembles the corresponding formula for the constant-shear

layer in (9.8), which gives the intrinsic upstream speed (1 + r)rLb for

the shear wave, where the factors n.,b are constants. However the corres-

ponding factor 2S2#/q in (16.8) is in general a function of height. The

Th-shear layer is therefore a more complex dynamic system.

The conditions for a stationary neutral non-tilting state of a wave

in the Th-shear layer are from (16.7-8)

(16.9) r = 1.5p, q = -72# = (2+3P)8t. (G=C= U)

The first condition makes the gravity wave stationary. The second condi-

tion makes the shear wave stationary. When the streamfunction has a sinu-

soidal variation in the x-direction this condition is a differential equation
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of the hypergeometric type. It has been studied by R. V. Garcia* who was

able to find all the stationary neutral waves in this Th-shear layer. We

shall derive Garcia's (still unpublished) solutions of (16.9) in section

20 below. But first we shall consider a few simple waves which may be

derived with less mathematical labor.

17. Some stationary waves in the Th-shear layer. - The form of the

stationary wave equation in (16.9) makes it plausible that it may have solu-

tions whose height variations are simple functions of T and S, say

(17.1) * = AnTnSmcos kx.

For the moment m and n are arbitrary non-negative constants. From (16.9)

the corresponding vorticity q of this wave is given by

(17.2) q/# = k3 -

Logarithmic height differentiation of (17.1) gives

*I/* - nTi/T + mS,/S = n/T- (m + n)T,

and a second differentiation gives

#IV*= [n/T- (m+n)T]' + [n/T- (m+n)T]2

=- [(m+n)(m+n+l)-n(n-l)/T')S 2 +m2.

With this value substituted, (17.2) becomes

q/(S' ) = (m+n)(m+n+l)-n(n-1)/T'+(k-m2)/S".

We shall only consider waves of this type for which m= k, so the last term

on the right is zero. Introducing the abbreviation

(17.3) Kn = (k+n)(k+in+l),

these waves have the resultant fields

(n = AnTnSkcoskx,

qn = An[KnTn - n(n - I)Tn - lsk + * cos kx.

Garcia, R. V., 1956: Barotropic Waves in Straight Parallel Flow with

Curved Velocity Profile, Tellus, 8, pp. 82-93.
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The factor in (16.8) which determines the phase velocity of the shear

wave component of these waves has the value

(17.5) q/(8) = Kn - n(n- I)/Te.

This factor is independent of height in the (n= 0)-wave and the (n= l)-wave,

so the instantaneous relative phase speeds of these non-tilting waves are

independent of height if the amplitude ratio is the same at all levels. They

have from (16.7-8) the values

(17.6) G/U = l.5Wr, C/U= 2(1 + r)/(Ko or K).

From (17.4) these families of waves have the resultant streamfunctions

(17.7) to = Sk coaskx, *1 = TSkcoskx,

with an arbitrary constant amplitude factor omitted.

The (n= 0)-family is symmetric with the same phase above and below

the central level. It is a b-state of a symmetric wave. The (n= 1)-family

is symmetric with opposite phase above and below the central level. It is

an a-state. If the amplitude ratio has the value 1.50 the gravity wave is

stationary in these waves. If, furthermore, Ko has the value 2 +3p also

the shear wave is stationary in the (n = 0)-family. If K, has this value

the shear wave is stationary in the (n= 1)-family. The conditions to be

satisfied by these two families of stationary waves are accordingly

(17.8) stationary a-wave: r. = 1.5o, K, = V, (v=2+34).

(17.9) stationary b-wave: rb = 1.5o, Ko = v. Kn= (k+n)(k+n+1)

These families represent two of the solutions of (16.9) which were found

by Garcia. He was able to prove that these are the only stationary waves

in the Th-shear layer (15.1) if its static stability is weak (p<4/3).

For stronger static stability there are other stationary waves (see sec-

tion 20).

Let us now compare the a- and b-waves in (17.7) with the correspond-

ing waves in the constant shear layer.
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18. The a-wave (nn i). - This wave has from (17.5 and 7) an instan-

taneous a-state with the field

(18.1) * a TSkcon kx, q/(82#) - K1 .

Its intrinsic upstream phase velocities for an arbitrary amplitude ratio are

(18.2) GA/U - 1 5/r. ; C./U = 2(U+ r. )/KA.

It is a stationary neutral a-wave if the amplitude ratio has the value 1.5p,

and the parameter K1 (see 17.3) has the value

(18.3) K, = (k+l)(k+2) = 2 +N.

This condition is represented in a k,p-diagram by a parabola through the

origin.

To compare this parabola with Goldstein's a-line for the stationary

a-waves in the constant-shear layer, we recall that k=a6kd=)6x, so the

stationary a-wave condition in (18.3) may be written

(18.4) it= + /12. (n= kd)

Near the origin this parabola coincides with Goldstein's a-line,

= K/(l -eK)- 1 to the order of 0•. For shorter waves the parabola

lies above the Goldstein line, but the two curves are almost coincident

for p<1 (see fig. 19). For example for x= 1 the stationary a-wave in

the constant-shear layer has the static stability p= (e -1)" = 0.582,

while the same wave in the Th-shear layer has the static stability

S= 7/12 = 0.583.

For other waves with the amplitude ratio 1.5p the gravity wave is

stationary while the shear wave moves intrinsically upstream with the

speed C, in (18.2). Its non-dimensional downstream speed with reference

to the fluid at the central level is

= (U - C, )/Uo = T[l - (2 + 30A)/1 I. (Th-shear)

Let us compare this speed at the distance Ad from the central level



(T 0.76-3/4) with the a-state speed in the constant shear layer, namely,

1 - (PC+ 1)(l - e")/M. (Constant-shear)

The (n l)-wave, for example, has here the a-state speed

2 + X& 7-12.2 J (Th-shear)01+1)01+ 2)° 20z

= 1 - (i+1)( -e 1 ) 7.36-12.64o. (Constant-shear)

20

For longer waves the agreement is even closer.

This good agreement in the dynamic a-state behavior of the symmetric

wave (18.1) in the Th-shear layer with the symmetric wave in the constant-

shear layer suggests that the two layers have similar dynamic characteristics,

at least for waves longer than about six shear layer depths.

19. The b-wave (n= 0). - This wave has from (17.5 and 7) an instan-

taneous b-state with the field

(19.1) * = Skcoskx, q/(Sa#) = Ko = k(k~l).

Its intrinsic upstream phase velocities for an arbitrary amplitude ratio are

Gb/U - 1.-5p/rb; Cb/U = 2(1+rr,)/Ko.

This wave is stationary if its amplitude ratio is 1.5p and the parameter

K% has the value

(19.2) KO = k(k +l) = 2+ 3p,

which is represented in the k,p-diagram by a parabola identical to the

a-parabola in (18.3) only displaced unit distance toward increasing k

(see fig. 19).

This parabola departs very much from the b-line for the constant

shear layer. The reason is that the wave in (19.1) has the maximum vorti-

city near the central level where the wave in the constant shear layer has

no added vorticity. The partial field from the vorticity in the central
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region augments the upstream propagation of the shear wave at all levels,

so the stationary b-wave in (19.1) is shorter than the stationary b-wave

in the constant-shear layer. If the excess vorticity in the central

region were removed from the wave, the shear wave would move downstream

at all levels, similar to the same wave in the constant shear layer.

It is impossible to set up a stationary b-wave in the Th-shear

layer unless it is given excess vorticity near the central level, where no

such vorticities can be generated by kinematic advection or by dynamic

action of the overweight. However, with the aid of the field of the a-wave

in (18.1) we may construct a b-wave which has no excess vorticity at the

central level simply by chamging the sign of the a-wave vorticity in the

lower layer. Accordingly this b-wave has the vorticity field

(19.3) q = KI ITISk+ 2 coo kx.

Above the central level this wave has the same vorticity as the a-wave in

(18.1). The partial field from the vorticities below the central level is

Laplacean in the upper region for both waves, so the two waves differ only

by a Laplacean field. Above the central level the streamfunction of the

vorticity wave in (19.3) accordingly has the form

# = (TSk+Ae kZ)coskx. (z>O)

Since the field is symmetric with respect to the central level we have

*'(Z=0)=0, so A=k-I. The streamfunction of the vorticity wive (19.3)

is therefore

(19.4) T - (Tsk+ k-lekIzI)cosokx.

If this wave has the amplitude ratio 1.5p, the gravity wave is stationary,

and from (16.8) the shear wave in the upper region has the relative speed

(19.5) Ub 3tj+2 (1+ 1 (r = 1.50)
" (k+1)(k+2) kT(l +T)k
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Its upstream speed is greater than in the corresponding a-wave (18.2). For

very short wave lengths it has the same asymptotic behavior as the a-wave.

In particular, the condition for a stationary short wave is the same (18.3)

for both waves. For the longer b-waves in (19.4), on the other hand, the

relative speed of the shear wave is a function of height, so for no value

of the static stability are these waves stationary at all levels simultan-

eously. The wave is stationary at a given level z= :(Ts) if the static

stability has the value of

(19.6) 3A,+2 = (k+l)(k+ 2)(i + )C1 (To) = U.
kTS (i + Ts) ;

At higher levels this wave moves slower than the air, at lower levels

faster. The wave is stationary far from the central level if

34 + 2 = (k + 1) (k + 2)C1 + (--k)• 4)1-1. C, (Ts =)= U•.

This line is shown in the upper lk,n-diagram in fig. 19. It meets the

Goldstein line for the stationary b-waves in the constant shear layer at

x= 2k= 1.5 and at x= 4 .15. In the spectral interval between these waves

the stationary b-wave in the constant shear layer has a little more static

stability. For example the (K= 2)-wave in the constant shear layer is

stationary if %= (ea - l)/(e0 + 1) = 0.76, while the same wave in (19.4) is

stationary far from the central level if I= 2/3.

We recall from (15.4) that the Th-shear layer has maximum static

stability at the level of T2 = )k. With this value of To substituted,

equation (19.6) marks the waves in (19.4) which are stationary at the

level of maximum stability. The corresponding line is shown in the upper

diagram in fig. 19. These waves have considerably less static stability

than the stationary b-waves in the constant shear layer. The main reason

is probably that the vorticity field in (19.3) has unrealistically large
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values near the center level where there is no physical mechanism for

the generation of vorticity.

Let us therefore consider a third class of b-waves which has very

little vorticity near the central level, namely waves with the vorticity

distribution qeTaSk+2 . The streamfunction of this wave is obtained by

taking the resultant of two of the waves in (17.4). Omitting the trigono-

metric factor, the waves of n= O, and n= 2 are

qo = Y=osk + 2; o = sk (2)

q. = (KT _ 2)Sk+ 2 " t. = T2Sk. (Ko)

The resultant of these, augmented by the factors to the right, is

(19.7) q = 4omT2Sk÷2 ; -- = (2+KoTa)Sk.

If the amplitude ratio of this wave is 1.51L, its gravity wave is station-

ary and its shear wave moves with the intrinsic upstream speed

(19.8) Cab= 3P+2 (1 + 2 (r = 1.5p)
U (k+ 2)(k+ 3) k(k+l)T2

This wave has maximum vorticity at the levels of To =14(l +Ak)-1 For the

very long waves these coincide with the levels of maximum stability. For

k= 2 they coincide with the levels of maximum vorticity gradient. For

k=0.8 the levels of maximum vorticity are in the middle between the

levels of maximum stability and maximum vorticity gradient. The wave

in (19.7) is stationary at the level of maximum stability (T2 =4.) if

the stability has the value of

(19.9) 3u+2 = k(k+l)(k+2)(k+3) C,(T2 U

ka+k+4

In a &,k-diagram (see lower diagram in fig. 19) this line meets the

b-line for the constant shear layer at the points (p=0, Ks=l.278...)

and (p= 1.75, K= 2.9). Between these points the wave in (19.9) has a
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little less static stability, but otherwise its properties are quite

similar to those of the stationary b-wave in the constant shear layer.

Like the stationary a-waves in section 18 this similarity probably

reflects a fundamental dynamic similarity between the Th-shear layer

and the constant shear layer. However, whereas the constant shear layer

has only these two families of stationary waves, the Th-shear layer has

an infinite number of such families.

20. The stationary waves in the Th-shear layer. (Garcia's solu-

tions.) - from (16.9) the general condition for a stationary wave in the

Th-shear layer with reference to the fluid at the central level (G= U= C)

is

(20.1) q = - = ws'. (v = 3P+ 2)

When the streamfunction has a sinusoidal variation in the x-direction,

Garcia noticed that this differential equation, by suitable transforma-

tion, is the hyper-geometric differential equation. As such its solu-

tions may be represented by the series

m-=n
(20.2) L = O AmTmSkcoskx,

where the coefficients Am are the coefficients of the hyper-geometric

series. These coefficients are in the present case easily determined

by the formulas in (17.4): The field in (20.2) has the vorticity

m=n m=n
(20.3) q = Am[EKmTm-m(m-l)TMl 2 ]5k+ 2 coskx= 2uAmTmSk+2coskx.

m=0 m=O

In a stationary wave this vorticity must have the value in (20.1), as

indicated. The coefficient for Tm gives

Am(Km-u) = (m+l)(m+2)Am+g.
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Repeated use of this recursion formula gives

(20.4) Am = Ao(Ko- ,)(Ke -v).... O .-4)(m) (M even)

(20.5) Am = A, (K - v)(Ka - V)....C(Kmua_, )(m07l. (m odd)

Thus * in (20.2) is a solution of the differential equation if

(20.6) v = Kn, or 3p+2 = (k+n)(k+n+l),

where n is any non-negative integer. If n is an even integer, A, = 0 and

the coefficients Am have the values in (20.4). If a is an odd integer,

Ao = 0 and the coefficients Am have the values in (20.5).

The stationary wave conditions in (20.6) are represented in the

ki, -diagram by a family of identical parabolas, each displaced unit

distance toward decreasing k from the next lower member. The (n= 0)-

parabola marks the stationary b-waves (see 19.2) which have no nodal

plane. The (n= 1)-parabola marks the stationary a-waves (see 18.3) which

have one nodal plane at the central level. The (n= 2)-parabola marks a

family of stationary waves with two nodal planes and so on. If n is odd,

the central level is a nodal plane and the field has opposite phase at

equal heights above and below. The wave is of the a-type. If n is even,

the wave has the same phase and amplitude at equal heights above and below

the interface. The wave is of the b-type.

By examining all the solutions of the hyper-geometric equation

Garcia found that the solutions in (20.6) represent all the stationary

waves in the Th-shear layer in (15.1) which have bounded and continuous

velocity fields.

-o0o-
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